三维生物目标检测和标记在多维显微镜成像

Juhui Wang, A. Trubuil, C. Graffigne
{"title":"三维生物目标检测和标记在多维显微镜成像","authors":"Juhui Wang, A. Trubuil, C. Graffigne","doi":"10.1109/ICIAP.2001.957011","DOIUrl":null,"url":null,"abstract":"One essential assumption used in object detection and labeling by imaging is that the photometric properties of the object are homogeneous. This homogeneity requirement is often violated in microscopy imaging. Classical methods are usually of high computational cost and fail to give a stable solution. This paper presents a low computational complexity and robust method for 3D biological object detection and labeling. The developed approach is based on a statistical, non-parametric framework. The image is first divided into regular non-overlapped regions and each region is evaluated according to a general photometric variability model. The regions not consistent with this model are considered as aberrations in the data and excluded from the analysis procedure. Simultaneously, the interior parts of the object are detected. They correspond to regions where the supposed model is valid. In the second stage, the valid regions from the same object are merged under a set of hypotheses. These hypotheses are generated by taking into account photometric and geometric properties of objects and the merging is realized according to an iterative algorithm. The approach has been applied in investigations of the spatial distribution of nuclei on colonic glands of rats observed with with help of confocal fluorescence microscopy.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D biological object detection and labeling in multidimensional microscopy imaging\",\"authors\":\"Juhui Wang, A. Trubuil, C. Graffigne\",\"doi\":\"10.1109/ICIAP.2001.957011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One essential assumption used in object detection and labeling by imaging is that the photometric properties of the object are homogeneous. This homogeneity requirement is often violated in microscopy imaging. Classical methods are usually of high computational cost and fail to give a stable solution. This paper presents a low computational complexity and robust method for 3D biological object detection and labeling. The developed approach is based on a statistical, non-parametric framework. The image is first divided into regular non-overlapped regions and each region is evaluated according to a general photometric variability model. The regions not consistent with this model are considered as aberrations in the data and excluded from the analysis procedure. Simultaneously, the interior parts of the object are detected. They correspond to regions where the supposed model is valid. In the second stage, the valid regions from the same object are merged under a set of hypotheses. These hypotheses are generated by taking into account photometric and geometric properties of objects and the merging is realized according to an iterative algorithm. The approach has been applied in investigations of the spatial distribution of nuclei on colonic glands of rats observed with with help of confocal fluorescence microscopy.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.957011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在物体检测和标记成像中使用的一个基本假设是物体的光度特性是均匀的。这种均匀性要求在显微镜成像中经常被违反。经典方法通常计算成本高,且不能给出稳定的解。提出了一种计算复杂度低、鲁棒性好的三维生物目标检测与标记方法。开发的方法是基于统计的非参数框架。首先将图像划分为规则的非重叠区域,并根据一般的光度变异性模型对每个区域进行评估。与该模型不一致的区域被认为是数据中的畸变,并被排除在分析程序之外。同时,检测物体的内部部分。它们对应于假定的模型有效的区域。在第二阶段,将同一目标的有效区域合并到一组假设下。这些假设是通过考虑物体的光度和几何特性产生的,并通过迭代算法实现合并。该方法已应用于共聚焦荧光显微镜观察大鼠结肠腺细胞核的空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D biological object detection and labeling in multidimensional microscopy imaging
One essential assumption used in object detection and labeling by imaging is that the photometric properties of the object are homogeneous. This homogeneity requirement is often violated in microscopy imaging. Classical methods are usually of high computational cost and fail to give a stable solution. This paper presents a low computational complexity and robust method for 3D biological object detection and labeling. The developed approach is based on a statistical, non-parametric framework. The image is first divided into regular non-overlapped regions and each region is evaluated according to a general photometric variability model. The regions not consistent with this model are considered as aberrations in the data and excluded from the analysis procedure. Simultaneously, the interior parts of the object are detected. They correspond to regions where the supposed model is valid. In the second stage, the valid regions from the same object are merged under a set of hypotheses. These hypotheses are generated by taking into account photometric and geometric properties of objects and the merging is realized according to an iterative algorithm. The approach has been applied in investigations of the spatial distribution of nuclei on colonic glands of rats observed with with help of confocal fluorescence microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1