迈向调度框架的资源管理器

Aleksandra Kuzmanovska, R. H. Mak, D. Epema
{"title":"迈向调度框架的资源管理器","authors":"Aleksandra Kuzmanovska, R. H. Mak, D. Epema","doi":"10.1109/CCGrid.2016.70","DOIUrl":null,"url":null,"abstract":"Due to the diversity in the applications that run in large distributed environments, many different application frameworks have been developed, such as MapReduce for data-intensive batch jobs and Spark for interactive data analytics. After initial deployment, a framework starts executing a large set of jobs that are submitted over time. When multiple such frameworks with time-varying resource demands are consolidated in a large distributed environment, static allocation of resources on a per-framework basis leads to low system utilization and to resource fragmentation. The goal of my PhD research is to improve the system utilization and framework performances in such consolidated environments by using dynamic resource allocation for efficient resource sharing among frameworks. My contribution towards this goal is a design and an implementation of a scalable resource manager that dynamically balances resources across set of multiple diverse frameworks in a large distributed environment based on resource requirements, system utilization or performance levels in the deployed frameworks.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Resource Manager for Scheduling Frameworks\",\"authors\":\"Aleksandra Kuzmanovska, R. H. Mak, D. Epema\",\"doi\":\"10.1109/CCGrid.2016.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the diversity in the applications that run in large distributed environments, many different application frameworks have been developed, such as MapReduce for data-intensive batch jobs and Spark for interactive data analytics. After initial deployment, a framework starts executing a large set of jobs that are submitted over time. When multiple such frameworks with time-varying resource demands are consolidated in a large distributed environment, static allocation of resources on a per-framework basis leads to low system utilization and to resource fragmentation. The goal of my PhD research is to improve the system utilization and framework performances in such consolidated environments by using dynamic resource allocation for efficient resource sharing among frameworks. My contribution towards this goal is a design and an implementation of a scalable resource manager that dynamically balances resources across set of multiple diverse frameworks in a large distributed environment based on resource requirements, system utilization or performance levels in the deployed frameworks.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于在大型分布式环境中运行的应用程序的多样性,已经开发了许多不同的应用程序框架,例如用于数据密集型批处理作业的MapReduce和用于交互式数据分析的Spark。在初始部署之后,框架开始执行一大批随时间提交的作业。当在大型分布式环境中整合具有时变资源需求的多个此类框架时,基于每个框架的静态资源分配会导致系统利用率低和资源碎片化。我的博士研究目标是通过使用动态资源分配来实现框架之间的有效资源共享,从而提高这种整合环境中的系统利用率和框架性能。我为实现这一目标所做的贡献是设计并实现了一个可扩展的资源管理器,它可以根据已部署框架中的资源需求、系统利用率或性能水平,在大型分布式环境中动态平衡多个不同框架之间的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Resource Manager for Scheduling Frameworks
Due to the diversity in the applications that run in large distributed environments, many different application frameworks have been developed, such as MapReduce for data-intensive batch jobs and Spark for interactive data analytics. After initial deployment, a framework starts executing a large set of jobs that are submitted over time. When multiple such frameworks with time-varying resource demands are consolidated in a large distributed environment, static allocation of resources on a per-framework basis leads to low system utilization and to resource fragmentation. The goal of my PhD research is to improve the system utilization and framework performances in such consolidated environments by using dynamic resource allocation for efficient resource sharing among frameworks. My contribution towards this goal is a design and an implementation of a scalable resource manager that dynamically balances resources across set of multiple diverse frameworks in a large distributed environment based on resource requirements, system utilization or performance levels in the deployed frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1