基于GPU的基序查找并行Gibbs采样算法

Linbin Yu, Yun Xu
{"title":"基于GPU的基序查找并行Gibbs采样算法","authors":"Linbin Yu, Yun Xu","doi":"10.1109/ISPA.2009.88","DOIUrl":null,"url":null,"abstract":"Motif is overrepresented pattern in biological sequence and Motif finding is an important problem in bioinformatics. Due to high computational complexity of motif finding, more and more computational capabilities are required as the rapid growth of available biological data, such as gene transcription data. Among many motif finding algorithms, Gibbs sampling is an effective method for long motif finding. In this paper we present an improved Gibbs sampling method on graphics processing units (GPU) to accelerate motif finding. Experimental data support that, compared to traditional programs on CPU, our program running on GPU provides an effective and low-cost solution for motif finding problem, especially for long Motif finding.","PeriodicalId":346815,"journal":{"name":"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Parallel Gibbs Sampling Algorithm for Motif Finding on GPU\",\"authors\":\"Linbin Yu, Yun Xu\",\"doi\":\"10.1109/ISPA.2009.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motif is overrepresented pattern in biological sequence and Motif finding is an important problem in bioinformatics. Due to high computational complexity of motif finding, more and more computational capabilities are required as the rapid growth of available biological data, such as gene transcription data. Among many motif finding algorithms, Gibbs sampling is an effective method for long motif finding. In this paper we present an improved Gibbs sampling method on graphics processing units (GPU) to accelerate motif finding. Experimental data support that, compared to traditional programs on CPU, our program running on GPU provides an effective and low-cost solution for motif finding problem, especially for long Motif finding.\",\"PeriodicalId\":346815,\"journal\":{\"name\":\"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2009.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2009.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

基序是生物序列中具有代表性的一种模式,基序的发现是生物信息学中的一个重要问题。由于基序查找的计算复杂度很高,随着可用生物数据(如基因转录数据)的快速增长,对计算能力的要求越来越高。在众多的基序查找算法中,Gibbs采样是一种有效的长基序查找方法。在本文中,我们提出了一种改进的吉布斯采样方法在图形处理单元(GPU)上加速motif查找。实验数据表明,与传统的CPU上的程序相比,我们的程序在GPU上运行,为motif查找问题,特别是长motif查找问题提供了一种有效且低成本的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Parallel Gibbs Sampling Algorithm for Motif Finding on GPU
Motif is overrepresented pattern in biological sequence and Motif finding is an important problem in bioinformatics. Due to high computational complexity of motif finding, more and more computational capabilities are required as the rapid growth of available biological data, such as gene transcription data. Among many motif finding algorithms, Gibbs sampling is an effective method for long motif finding. In this paper we present an improved Gibbs sampling method on graphics processing units (GPU) to accelerate motif finding. Experimental data support that, compared to traditional programs on CPU, our program running on GPU provides an effective and low-cost solution for motif finding problem, especially for long Motif finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Completion Time Estimation for Instances of Generalized Well-Formed Workflow A Synchronization-Based Alternative to Directory Protocol Web Service Locating Unit in RFID-Centric Anti-counterfeit System Distributed Transfer Network Learning Based Intrusion Detection Multi-Source Traffic Data Fusion Method Based on Regulation and Reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1