非线性参数估计与数据同化的迭代卷积粒子滤波及其在作物产量预测中的应用

Yuting Chen, S. Trevezas, P. Cournède
{"title":"非线性参数估计与数据同化的迭代卷积粒子滤波及其在作物产量预测中的应用","authors":"Yuting Chen, S. Trevezas, P. Cournède","doi":"10.1137/1.9781611973273.10","DOIUrl":null,"url":null,"abstract":"The complexity of plant growth models and the scarcity of experimental data make the application of conventional data assimilation techniques rather difficult. In this paper, we use the Convolution Particle Filter (CPF) and an iterative adaptation, the Iterative Convolution Particle Filter (ICPF) for nonlinear parameter estimation. Both methods provide prior distributions in the Bayesian framework for data assimilation. CPF is sequentially used to update state and parameter estimates in order to improve model prediction and to assess the predictive uncertainty. The predictive performances of the two methods are evaluated by an application to the LNAS sugar beet growth model with three sets of real measurements, one used for parameter estimation and the two others used to test the model predictive capacity, both with and without data assimilation. Despite the low accuracy and the scarcity of the early data used for assimilation, the CPF-based data assimilation approach with the prior distribution based on ICPF estimations showed promising predictive capacities and provided robust confidence intervals. The method can therefore be considered as a potential candidate for yield prediction applications in agriculture.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"912 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iterative convolution particle filtering for nonlinear parameter estimation and data assimilation with application to crop yield prediction\",\"authors\":\"Yuting Chen, S. Trevezas, P. Cournède\",\"doi\":\"10.1137/1.9781611973273.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of plant growth models and the scarcity of experimental data make the application of conventional data assimilation techniques rather difficult. In this paper, we use the Convolution Particle Filter (CPF) and an iterative adaptation, the Iterative Convolution Particle Filter (ICPF) for nonlinear parameter estimation. Both methods provide prior distributions in the Bayesian framework for data assimilation. CPF is sequentially used to update state and parameter estimates in order to improve model prediction and to assess the predictive uncertainty. The predictive performances of the two methods are evaluated by an application to the LNAS sugar beet growth model with three sets of real measurements, one used for parameter estimation and the two others used to test the model predictive capacity, both with and without data assimilation. Despite the low accuracy and the scarcity of the early data used for assimilation, the CPF-based data assimilation approach with the prior distribution based on ICPF estimations showed promising predictive capacities and provided robust confidence intervals. The method can therefore be considered as a potential candidate for yield prediction applications in agriculture.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"912 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973273.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973273.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于植物生长模型的复杂性和实验数据的稀缺性,使得传统的数据同化技术应用起来相当困难。在本文中,我们使用卷积粒子滤波器(CPF)和迭代自适应迭代卷积粒子滤波器(ICPF)进行非线性参数估计。这两种方法都在贝叶斯框架中提供先验分布来进行数据同化。CPF被依次用于更新状态和参数估计,以改进模型预测和评估预测的不确定性。通过对LNAS甜菜生长模型的三组实际测量,评估了两种方法的预测性能,其中一组用于参数估计,另外两组用于测试模型的预测能力,有和没有数据同化。尽管用于同化的早期数据精度较低且稀缺,但基于cpf的数据同化方法具有基于ICPF估计的先验分布,显示出良好的预测能力并提供了稳健的置信区间。因此,该方法可以被认为是农业产量预测应用的潜在候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative convolution particle filtering for nonlinear parameter estimation and data assimilation with application to crop yield prediction
The complexity of plant growth models and the scarcity of experimental data make the application of conventional data assimilation techniques rather difficult. In this paper, we use the Convolution Particle Filter (CPF) and an iterative adaptation, the Iterative Convolution Particle Filter (ICPF) for nonlinear parameter estimation. Both methods provide prior distributions in the Bayesian framework for data assimilation. CPF is sequentially used to update state and parameter estimates in order to improve model prediction and to assess the predictive uncertainty. The predictive performances of the two methods are evaluated by an application to the LNAS sugar beet growth model with three sets of real measurements, one used for parameter estimation and the two others used to test the model predictive capacity, both with and without data assimilation. Despite the low accuracy and the scarcity of the early data used for assimilation, the CPF-based data assimilation approach with the prior distribution based on ICPF estimations showed promising predictive capacities and provided robust confidence intervals. The method can therefore be considered as a potential candidate for yield prediction applications in agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a minimum L2-norm exact control of the Pauli equation Diffusive Realization of a Lyapunov Equation Solution, and Parallel Algorithms Implementation A Variable Reference Trajectory for Model-Free Glycemia Regulation Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Identification of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1