低碳混凝土的可能性:北部边缘和北极地区的环境保护和法规

I. Nováková, P. Perumal, A. Ćwirzeń, O. Wallevik
{"title":"低碳混凝土的可能性:北部边缘和北极地区的环境保护和法规","authors":"I. Nováková, P. Perumal, A. Ćwirzeń, O. Wallevik","doi":"10.3390/materproc2023013014","DOIUrl":null,"url":null,"abstract":": Concrete is one of the most common building materials in the Northern Periphery and Arctic, and therefore we should pay attention to its quality while reducing its carbon footprint. The concrete industry has established many measures to limit greenhouse gas emissions from concrete, as stated in the environmental product declaration (EPD). The most significant contributor is cement (common dose between 250 and 600 kg per 1 m 3 of concrete) in a concrete binder. Aside from the use of alternative fuels for cement production, new alternative materials for cement replacement are being sought. Those materials are called supplementary cementitious materials and mainly originate from industrial waste streams. Some of the materials are already standard and limited by the maximum allowed replacement, and some are new and still under investigation. The benefits and limitations of low-carbon concrete regulations in Norway, Sweden, Iceland, and Finland are demonstrated on three different concrete mixes in this article. The sorting of a reference mix and two low-carbon concrete mixes according to 4 different systems showed the informative character of the Icelandic system and the underestimation of possibilities for the carbon footprint of concrete in the Swedish classification system.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low Carbon Concrete Possibilities: EPD and Regulations in Northern Periphery and Arctic\",\"authors\":\"I. Nováková, P. Perumal, A. Ćwirzeń, O. Wallevik\",\"doi\":\"10.3390/materproc2023013014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Concrete is one of the most common building materials in the Northern Periphery and Arctic, and therefore we should pay attention to its quality while reducing its carbon footprint. The concrete industry has established many measures to limit greenhouse gas emissions from concrete, as stated in the environmental product declaration (EPD). The most significant contributor is cement (common dose between 250 and 600 kg per 1 m 3 of concrete) in a concrete binder. Aside from the use of alternative fuels for cement production, new alternative materials for cement replacement are being sought. Those materials are called supplementary cementitious materials and mainly originate from industrial waste streams. Some of the materials are already standard and limited by the maximum allowed replacement, and some are new and still under investigation. The benefits and limitations of low-carbon concrete regulations in Norway, Sweden, Iceland, and Finland are demonstrated on three different concrete mixes in this article. The sorting of a reference mix and two low-carbon concrete mixes according to 4 different systems showed the informative character of the Icelandic system and the underestimation of possibilities for the carbon footprint of concrete in the Swedish classification system.\",\"PeriodicalId\":298795,\"journal\":{\"name\":\"10th MATBUD’2023 Scientific-Technical Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th MATBUD’2023 Scientific-Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/materproc2023013014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th MATBUD’2023 Scientific-Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2023013014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

:混凝土是北部周边地区和北极地区最常见的建筑材料之一,因此我们应该在关注其质量的同时减少其碳足迹。正如环境产品声明(EPD)所述,混凝土行业已经制定了许多措施来限制混凝土的温室气体排放。最重要的贡献者是混凝土粘合剂中的水泥(通常剂量在每1立方米混凝土250至600公斤之间)。除了使用替代燃料生产水泥外,人们还在寻找替代水泥的新材料。这些材料被称为补充胶凝材料,主要来自工业废物流。有些材料已经是标准的,受到最大允许替换量的限制,有些是新的,仍在调查中。本文以三种不同的混凝土混合料为例,展示了挪威、瑞典、冰岛和芬兰的低碳混凝土法规的好处和局限性。根据4种不同的系统对一种参考配合比和两种低碳混凝土配合比进行分类,显示了冰岛系统的信息特征和瑞典分类系统对混凝土碳足迹可能性的低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Carbon Concrete Possibilities: EPD and Regulations in Northern Periphery and Arctic
: Concrete is one of the most common building materials in the Northern Periphery and Arctic, and therefore we should pay attention to its quality while reducing its carbon footprint. The concrete industry has established many measures to limit greenhouse gas emissions from concrete, as stated in the environmental product declaration (EPD). The most significant contributor is cement (common dose between 250 and 600 kg per 1 m 3 of concrete) in a concrete binder. Aside from the use of alternative fuels for cement production, new alternative materials for cement replacement are being sought. Those materials are called supplementary cementitious materials and mainly originate from industrial waste streams. Some of the materials are already standard and limited by the maximum allowed replacement, and some are new and still under investigation. The benefits and limitations of low-carbon concrete regulations in Norway, Sweden, Iceland, and Finland are demonstrated on three different concrete mixes in this article. The sorting of a reference mix and two low-carbon concrete mixes according to 4 different systems showed the informative character of the Icelandic system and the underestimation of possibilities for the carbon footprint of concrete in the Swedish classification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geochemical and Limnological Characterization of the Corta Atalaya Pit Lake (Riotinto Mines, Spain) Statement of Peer Review Influence of Environmental Conditions on Steel Corrosion in Concrete Exposed to Gamma Radiation Geopolymers—Base Materials and Properties of Green Structural Materials About Gas Permeability and Diffusion through Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1