薄板样条模型的弹性细部匹配

A. Bazen, S. H. Gerez
{"title":"薄板样条模型的弹性细部匹配","authors":"A. Bazen, S. H. Gerez","doi":"10.1109/ICPR.2002.1048471","DOIUrl":null,"url":null,"abstract":"This paper presents a novel minutiae matching method that deals with elastic distortions by normalizing the shape of the test fingerprint with respect to the template. The method first determines possible matching minutiae pairs by means of comparing local neighborhoods of the minutiae. Next a thin-plate spline model is used to describe the non-linear distortions between the two sets of possible pairs. One of the fingerprints is deformed and registered according to the estimated model, and then the number of matching minutiae is counted. This method is able to deal with all possible non-linear distortions while using very tight bounding boxes. For deformed fingerprints, the algorithm gives considerably higher matching scores compared to rigid matching algorithms, while only taking 100 ms on a 1 GHz P-III machine.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Elastic minutiae matching by means of thin-plate spline models\",\"authors\":\"A. Bazen, S. H. Gerez\",\"doi\":\"10.1109/ICPR.2002.1048471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel minutiae matching method that deals with elastic distortions by normalizing the shape of the test fingerprint with respect to the template. The method first determines possible matching minutiae pairs by means of comparing local neighborhoods of the minutiae. Next a thin-plate spline model is used to describe the non-linear distortions between the two sets of possible pairs. One of the fingerprints is deformed and registered according to the estimated model, and then the number of matching minutiae is counted. This method is able to deal with all possible non-linear distortions while using very tight bounding boxes. For deformed fingerprints, the algorithm gives considerably higher matching scores compared to rigid matching algorithms, while only taking 100 ms on a 1 GHz P-III machine.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种新的细节匹配方法,该方法通过将测试指纹的形状相对于模板进行归一化来处理弹性变形。该方法首先通过比较细节的局部邻域来确定可能匹配的细节对。然后用薄板样条模型描述两组可能对之间的非线性畸变。根据估计的模型对其中一个指纹进行变形和配准,然后统计匹配的细节个数。这种方法能够处理所有可能的非线性失真,同时使用非常紧密的边界框。对于变形指纹,与刚性匹配算法相比,该算法提供了相当高的匹配分数,而在1 GHz P-III机器上仅需要100 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic minutiae matching by means of thin-plate spline models
This paper presents a novel minutiae matching method that deals with elastic distortions by normalizing the shape of the test fingerprint with respect to the template. The method first determines possible matching minutiae pairs by means of comparing local neighborhoods of the minutiae. Next a thin-plate spline model is used to describe the non-linear distortions between the two sets of possible pairs. One of the fingerprints is deformed and registered according to the estimated model, and then the number of matching minutiae is counted. This method is able to deal with all possible non-linear distortions while using very tight bounding boxes. For deformed fingerprints, the algorithm gives considerably higher matching scores compared to rigid matching algorithms, while only taking 100 ms on a 1 GHz P-III machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1