静态建模中岩石属性分布的人工智能地震表征

Sergio Roberto Mata García, Javier Carrasco Hernández, J. López
{"title":"静态建模中岩石属性分布的人工智能地震表征","authors":"Sergio Roberto Mata García, Javier Carrasco Hernández, J. López","doi":"10.2118/196647-ms","DOIUrl":null,"url":null,"abstract":"\n This study examines which is the margin of usability for Artificial Intelligence (AI) algorithms related to the rock properties distribution in static modeling. This novel method shows a forward modeling approach using neural networks and genetic algorithms to optimize correlation patterns among seismic traces of stack volumes and well rock properties. Once a set of nonlinear functions is optimized in the well locations, to correlate seismic traces and rock properties, spatial response is estimated using the seismic volume. This seismic characterization process is directly dependent on the error minimization during the structural seismic interpretation process, as well as, honoring the structural complexity while modeling. Previous points are key elements to obtain an adequate correlation between well data and seismic traces. The joint mechanism of neural networks and genetic algorithms globally optimize the nonlinear functions and its parameters to minimize the cost function. Estimated objective function correlates well rock properties with seismic stack data. This mechanism is applied to real data, within a high structural complexity and several wells. As an output, calibrated petrophysical time volumes in the interval of interest are obtained. Properties are used initially to generate a geological facies model. Subsequently, facies and seismic properties are used for the three-dimensional distribution of petrophysical properties such as: rock type, porosity, clay volume and permeability. Therefore, artificial intelligence algorithms can be widely exploited for uncertainty reduction within the rock property spatial estimation.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Characterisation using Artificial Intelligence Algorithms for Rock Property Distribution in Static Modeling\",\"authors\":\"Sergio Roberto Mata García, Javier Carrasco Hernández, J. López\",\"doi\":\"10.2118/196647-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study examines which is the margin of usability for Artificial Intelligence (AI) algorithms related to the rock properties distribution in static modeling. This novel method shows a forward modeling approach using neural networks and genetic algorithms to optimize correlation patterns among seismic traces of stack volumes and well rock properties. Once a set of nonlinear functions is optimized in the well locations, to correlate seismic traces and rock properties, spatial response is estimated using the seismic volume. This seismic characterization process is directly dependent on the error minimization during the structural seismic interpretation process, as well as, honoring the structural complexity while modeling. Previous points are key elements to obtain an adequate correlation between well data and seismic traces. The joint mechanism of neural networks and genetic algorithms globally optimize the nonlinear functions and its parameters to minimize the cost function. Estimated objective function correlates well rock properties with seismic stack data. This mechanism is applied to real data, within a high structural complexity and several wells. As an output, calibrated petrophysical time volumes in the interval of interest are obtained. Properties are used initially to generate a geological facies model. Subsequently, facies and seismic properties are used for the three-dimensional distribution of petrophysical properties such as: rock type, porosity, clay volume and permeability. Therefore, artificial intelligence algorithms can be widely exploited for uncertainty reduction within the rock property spatial estimation.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196647-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196647-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了静态建模中与岩石性质分布相关的人工智能(AI)算法的可用性。该方法采用神经网络和遗传算法进行正演建模,以优化叠体体积和井岩性质地震轨迹之间的关联模式。一旦在井位上优化了一组非线性函数,将地震轨迹和岩石性质联系起来,就可以使用地震体积来估计空间响应。这种地震表征过程直接依赖于构造地震解释过程中的误差最小化,以及在建模时尊重结构的复杂性。要在井资料和地震迹线之间获得充分的相关性,前面几点是关键要素。神经网络和遗传算法的联合机制对非线性函数及其参数进行全局优化,使代价函数最小。估计的目标函数将井岩性质与地震叠加数据联系起来。该机制应用于高结构复杂性和多口井的实际数据。作为输出,可以获得感兴趣区间的校准岩石物理时间体积。最初使用属性来生成地质相模型。随后,通过相和地震性质确定岩石物性的三维分布,如岩石类型、孔隙度、粘土体积和渗透率。因此,人工智能算法可以广泛地用于减少岩石性质空间估计中的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Characterisation using Artificial Intelligence Algorithms for Rock Property Distribution in Static Modeling
This study examines which is the margin of usability for Artificial Intelligence (AI) algorithms related to the rock properties distribution in static modeling. This novel method shows a forward modeling approach using neural networks and genetic algorithms to optimize correlation patterns among seismic traces of stack volumes and well rock properties. Once a set of nonlinear functions is optimized in the well locations, to correlate seismic traces and rock properties, spatial response is estimated using the seismic volume. This seismic characterization process is directly dependent on the error minimization during the structural seismic interpretation process, as well as, honoring the structural complexity while modeling. Previous points are key elements to obtain an adequate correlation between well data and seismic traces. The joint mechanism of neural networks and genetic algorithms globally optimize the nonlinear functions and its parameters to minimize the cost function. Estimated objective function correlates well rock properties with seismic stack data. This mechanism is applied to real data, within a high structural complexity and several wells. As an output, calibrated petrophysical time volumes in the interval of interest are obtained. Properties are used initially to generate a geological facies model. Subsequently, facies and seismic properties are used for the three-dimensional distribution of petrophysical properties such as: rock type, porosity, clay volume and permeability. Therefore, artificial intelligence algorithms can be widely exploited for uncertainty reduction within the rock property spatial estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Middle East Karst Carbonate: An Integrated Workflow For Prediction Of Karst Enhancement Distribution Potential Applicability of Miscible N2 Flooding in High-Temperature Abu Dhabi Reservoir Modelling Dispersed Chemical Droplets Injection in the Gas Stream for EOR Applications A Collaborative Approach to Risk Assessment and Mitigation of Pre-Production Cross-Flow for a Multi-Billion Dollar Sour Field Development Project in the Sultanate of Oman: A Case Study Multidisciplinary Approach for Unconventional Reservoirs Characterisation by Integrating Wireline Openhole Logging Techniques – Electric and Sonic to Formation Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1