非正则子采样图像的频率选择性重构自适应频率先验

Jürgen Seiler, André Kaup
{"title":"非正则子采样图像的频率选择性重构自适应频率先验","authors":"Jürgen Seiler, André Kaup","doi":"10.1109/MMSP.2016.7813347","DOIUrl":null,"url":null,"abstract":"Image signals typically are defined on a rectangular two-dimensional grid. However, there exist scenarios where this is not fulfilled and where the image information only is available for a non-regular subset of pixel position. For processing, transmitting or displaying such an image signal, a re-sampling to a regular grid is required. Recently, Frequency Selective Reconstruction (FSR) has been proposed as a very effective sparsity-based algorithm for solving this under-determined problem. For this, FSR iteratively generates a model of the signal in the Fourier-domain. In this context, a fixed frequency prior inspired by the optical transfer function is used for favoring low-frequency content. However, this fixed prior is often too strict and may lead to a reduced reconstruction quality. To resolve this weakness, this paper proposes an adaptive frequency prior which takes the local density of the available samples into account. The proposed adaptive prior allows for a very high reconstruction quality, yielding gains of up to 0.6 dB PSNR over the fixed prior, independently of the density of the available samples. Compared to other state-of-the-art algorithms, visually noticeable gains of several dB are possible.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"940 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive frequency prior for frequency selective reconstruction of images from non-regular subsampling\",\"authors\":\"Jürgen Seiler, André Kaup\",\"doi\":\"10.1109/MMSP.2016.7813347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image signals typically are defined on a rectangular two-dimensional grid. However, there exist scenarios where this is not fulfilled and where the image information only is available for a non-regular subset of pixel position. For processing, transmitting or displaying such an image signal, a re-sampling to a regular grid is required. Recently, Frequency Selective Reconstruction (FSR) has been proposed as a very effective sparsity-based algorithm for solving this under-determined problem. For this, FSR iteratively generates a model of the signal in the Fourier-domain. In this context, a fixed frequency prior inspired by the optical transfer function is used for favoring low-frequency content. However, this fixed prior is often too strict and may lead to a reduced reconstruction quality. To resolve this weakness, this paper proposes an adaptive frequency prior which takes the local density of the available samples into account. The proposed adaptive prior allows for a very high reconstruction quality, yielding gains of up to 0.6 dB PSNR over the fixed prior, independently of the density of the available samples. Compared to other state-of-the-art algorithms, visually noticeable gains of several dB are possible.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"940 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像信号通常定义在矩形二维网格上。然而,在某些情况下,这并没有实现,并且图像信息只能用于像素位置的非规则子集。为了处理、传输或显示这样的图像信号,需要对规则网格进行重新采样。近年来,频率选择重建(FSR)作为一种非常有效的基于稀疏性的算法被提出来解决这一欠确定问题。为此,FSR迭代地在傅里叶域中生成信号的模型。在这种情况下,由光学传递函数激发的固定频率先验用于有利于低频内容。然而,这种固定的先验往往过于严格,可能导致重建质量下降。为了解决这一缺点,本文提出了一种考虑可用样本的局部密度的自适应频率先验。所提出的自适应先验允许非常高的重建质量,与固定先验相比,产生高达0.6 dB PSNR的增益,与可用样本的密度无关。与其他最先进的算法相比,可以实现几个dB的视觉显著增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive frequency prior for frequency selective reconstruction of images from non-regular subsampling
Image signals typically are defined on a rectangular two-dimensional grid. However, there exist scenarios where this is not fulfilled and where the image information only is available for a non-regular subset of pixel position. For processing, transmitting or displaying such an image signal, a re-sampling to a regular grid is required. Recently, Frequency Selective Reconstruction (FSR) has been proposed as a very effective sparsity-based algorithm for solving this under-determined problem. For this, FSR iteratively generates a model of the signal in the Fourier-domain. In this context, a fixed frequency prior inspired by the optical transfer function is used for favoring low-frequency content. However, this fixed prior is often too strict and may lead to a reduced reconstruction quality. To resolve this weakness, this paper proposes an adaptive frequency prior which takes the local density of the available samples into account. The proposed adaptive prior allows for a very high reconstruction quality, yielding gains of up to 0.6 dB PSNR over the fixed prior, independently of the density of the available samples. Compared to other state-of-the-art algorithms, visually noticeable gains of several dB are possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized dirichlet mixture matching projection for supervised linear dimensionality reduction of proportional data Mobile live streaming: Insights from the periscope service Low-power distributed sparse recovery testbed on wireless sensor networks Laughter detection based on the fusion of local binary patterns, spectral and prosodic features An embedded 3D geometry score for mobile 3D visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1