Top-N上下文感知推荐的分层混合特征模型

Yingpeng Du, Hongzhi Liu, Zhonghai Wu, Xing Zhang
{"title":"Top-N上下文感知推荐的分层混合特征模型","authors":"Yingpeng Du, Hongzhi Liu, Zhonghai Wu, Xing Zhang","doi":"10.1109/ICDM.2018.00026","DOIUrl":null,"url":null,"abstract":"Precise prediction of users' behavior is critical for users' satisfaction and platforms' benefit. A user's behavior heavily depends on the user's general preference and contextual information (current location, weather etc.). In this paper, we propose a succinct hierarchical framework named Hierarchical Hybrid Feature Model (HHFM). It combines users' general taste and diverse contextual information into a hybrid feature representation to profile users' dynamic preference w.r.t context. Meanwhile, we propose an n-way concatenation pooling strategy to capture the non-linear and complex inherent structures of real-world data, which were ignored by most existing methods like Factorization Machines. Conceptually, our model subsumes several existing methods when choosing proper concatenation and pooling strategies. Extensive experiments show our model consistently outperforms state-of-the-art methods on three real-world data sets.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Hybrid Feature Model for Top-N Context-Aware Recommendation\",\"authors\":\"Yingpeng Du, Hongzhi Liu, Zhonghai Wu, Xing Zhang\",\"doi\":\"10.1109/ICDM.2018.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise prediction of users' behavior is critical for users' satisfaction and platforms' benefit. A user's behavior heavily depends on the user's general preference and contextual information (current location, weather etc.). In this paper, we propose a succinct hierarchical framework named Hierarchical Hybrid Feature Model (HHFM). It combines users' general taste and diverse contextual information into a hybrid feature representation to profile users' dynamic preference w.r.t context. Meanwhile, we propose an n-way concatenation pooling strategy to capture the non-linear and complex inherent structures of real-world data, which were ignored by most existing methods like Factorization Machines. Conceptually, our model subsumes several existing methods when choosing proper concatenation and pooling strategies. Extensive experiments show our model consistently outperforms state-of-the-art methods on three real-world data sets.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

准确预测用户行为对用户满意度和平台利益至关重要。用户的行为很大程度上取决于用户的一般偏好和上下文信息(当前位置、天气等)。在本文中,我们提出了一个简洁的层次结构框架——层次混合特征模型(HHFM)。它将用户的一般品味和不同的上下文信息组合成混合特征表示,以描述用户在上下文中的动态偏好。同时,我们提出了一种n-way连接池策略,以捕获现实世界数据的非线性和复杂的固有结构,这些结构被大多数现有方法(如Factorization Machines)所忽略。从概念上讲,我们的模型在选择适当的连接和池化策略时包含了几种现有的方法。广泛的实验表明,我们的模型在三个真实世界的数据集上始终优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Hybrid Feature Model for Top-N Context-Aware Recommendation
Precise prediction of users' behavior is critical for users' satisfaction and platforms' benefit. A user's behavior heavily depends on the user's general preference and contextual information (current location, weather etc.). In this paper, we propose a succinct hierarchical framework named Hierarchical Hybrid Feature Model (HHFM). It combines users' general taste and diverse contextual information into a hybrid feature representation to profile users' dynamic preference w.r.t context. Meanwhile, we propose an n-way concatenation pooling strategy to capture the non-linear and complex inherent structures of real-world data, which were ignored by most existing methods like Factorization Machines. Conceptually, our model subsumes several existing methods when choosing proper concatenation and pooling strategies. Extensive experiments show our model consistently outperforms state-of-the-art methods on three real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1