基于置换群智能构造高周长LDPC码

Qiang Wang, Tingting Lan
{"title":"基于置换群智能构造高周长LDPC码","authors":"Qiang Wang, Tingting Lan","doi":"10.1109/cis2018.2018.00084","DOIUrl":null,"url":null,"abstract":"In the field of wireless communications, it is of great significance to structure LDPC codes (Low-density Parity-check codes) with large girth. We propose a method to construct high girth LDPC codes based on algebra permutation group of intelligent. Girth larger parity check matrix can be found in Gallager parity check matrix set using genetic algorithm based on permutation group in a relatively short period of time. Simulation results show that the algorithm is efficient, versatile, and consistent with the theoretical analysis.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Construct High Girth LDPC Codes Based on Permutation Groups\",\"authors\":\"Qiang Wang, Tingting Lan\",\"doi\":\"10.1109/cis2018.2018.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of wireless communications, it is of great significance to structure LDPC codes (Low-density Parity-check codes) with large girth. We propose a method to construct high girth LDPC codes based on algebra permutation group of intelligent. Girth larger parity check matrix can be found in Gallager parity check matrix set using genetic algorithm based on permutation group in a relatively short period of time. Simulation results show that the algorithm is efficient, versatile, and consistent with the theoretical analysis.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cis2018.2018.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cis2018.2018.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在无线通信领域,构造大周长的低密度奇偶校验码具有十分重要的意义。提出了一种基于智能代数置换群构造高周长LDPC码的方法。利用基于置换群的遗传算法,可以在较短的时间内在Gallager奇偶校验矩阵集合中找到周长较大的奇偶校验矩阵。仿真结果表明,该算法高效、通用性强,与理论分析结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Construct High Girth LDPC Codes Based on Permutation Groups
In the field of wireless communications, it is of great significance to structure LDPC codes (Low-density Parity-check codes) with large girth. We propose a method to construct high girth LDPC codes based on algebra permutation group of intelligent. Girth larger parity check matrix can be found in Gallager parity check matrix set using genetic algorithm based on permutation group in a relatively short period of time. Simulation results show that the algorithm is efficient, versatile, and consistent with the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real-Time Location Privacy Protection Method Based on Space Transformation Cryptanalysis of Kumar's Remote User Authentication Scheme with Smart Card Off-Topic Text Detection Based on Neural Networks Combined with Text Features Research of X Ray Image Recognition Based on Neural Network CFO Algorithm Using Niche and Opposition-Based Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1