基于稀疏表示的一人一样本人脸识别

Yan Zhang, Hua Peng
{"title":"基于稀疏表示的一人一样本人脸识别","authors":"Yan Zhang, Hua Peng","doi":"10.1049/iet-spr.2016.0067","DOIUrl":null,"url":null,"abstract":"One sample per person face recognition (OSPP) is a challenging problem in face recognition community. Lack of samples leads to performance deterioration. Extended sparse representation-based classifier (ESRC) demonstrates excellent performance on OSPP. However, because there are intra-class variant atoms in the dictionary of ESRC, the number of atoms in the dictionary is always large and it will spend a long time during recognition. In this study, the authors propose a new OSPP face recognition algorithm via sparse representation (OSPP-SR). A compressed dictionary and a new identification strategy are provided in OSPP-SR. It is proved theoretically and experimentally that OSPP-SR reaches better or similar performance but spends less time than ESRC. Experiments are conducted on three different databases (extended Yale Face database B, AR database and FERET database) to show the validity of OSPP-SR. Images under clean and noise conditions are also tested to evaluate the robustness of OSPP-SR.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"One sample per person face recognition via sparse representation\",\"authors\":\"Yan Zhang, Hua Peng\",\"doi\":\"10.1049/iet-spr.2016.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One sample per person face recognition (OSPP) is a challenging problem in face recognition community. Lack of samples leads to performance deterioration. Extended sparse representation-based classifier (ESRC) demonstrates excellent performance on OSPP. However, because there are intra-class variant atoms in the dictionary of ESRC, the number of atoms in the dictionary is always large and it will spend a long time during recognition. In this study, the authors propose a new OSPP face recognition algorithm via sparse representation (OSPP-SR). A compressed dictionary and a new identification strategy are provided in OSPP-SR. It is proved theoretically and experimentally that OSPP-SR reaches better or similar performance but spends less time than ESRC. Experiments are conducted on three different databases (extended Yale Face database B, AR database and FERET database) to show the validity of OSPP-SR. Images under clean and noise conditions are also tested to evaluate the robustness of OSPP-SR.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2016.0067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2016.0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一人一样本人脸识别(OSPP)是人脸识别领域的一个难题。缺少样本导致性能下降。基于扩展稀疏表示的分类器(ESRC)在OSPP上表现出优异的性能。然而,由于ESRC字典中存在类内变异原子,因此字典中的原子数量总是很大,在识别过程中会花费很长时间。在本研究中,作者提出了一种新的基于稀疏表示的OSPP人脸识别算法。在spp - sr中提供了一个压缩字典和一个新的识别策略。理论和实验证明,OSPP-SR比ESRC达到更好或相似的性能,但所需的时间更短。在三个不同的数据库(扩展的Yale Face数据库B、AR数据库和FERET数据库)上进行了实验,验证了OSPP-SR的有效性。在清洁和噪声条件下对图像进行了测试,以评估OSPP-SR的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One sample per person face recognition via sparse representation
One sample per person face recognition (OSPP) is a challenging problem in face recognition community. Lack of samples leads to performance deterioration. Extended sparse representation-based classifier (ESRC) demonstrates excellent performance on OSPP. However, because there are intra-class variant atoms in the dictionary of ESRC, the number of atoms in the dictionary is always large and it will spend a long time during recognition. In this study, the authors propose a new OSPP face recognition algorithm via sparse representation (OSPP-SR). A compressed dictionary and a new identification strategy are provided in OSPP-SR. It is proved theoretically and experimentally that OSPP-SR reaches better or similar performance but spends less time than ESRC. Experiments are conducted on three different databases (extended Yale Face database B, AR database and FERET database) to show the validity of OSPP-SR. Images under clean and noise conditions are also tested to evaluate the robustness of OSPP-SR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1