预测支持恢复与电视弹性网惩罚和逻辑回归:应用于结构MRI

Mathieu Dubois, F. Hadj-Selem, Tommy Löfstedt, M. Perrot, C. Fischer, V. Frouin, E. Duchesnay
{"title":"预测支持恢复与电视弹性网惩罚和逻辑回归:应用于结构MRI","authors":"Mathieu Dubois, F. Hadj-Selem, Tommy Löfstedt, M. Perrot, C. Fischer, V. Frouin, E. Duchesnay","doi":"10.1109/PRNI.2014.6858517","DOIUrl":null,"url":null,"abstract":"The use of machine-learning in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Although such multivariate methods can capture complex relationships in the data, traditional approaches provide irregular (ℓ2 penalty) or scattered (ℓ1 penalty) predictive pattern with a very limited relevance. A penalty like Total Variation (TV) that exploits the natural 3D structure of the images can increase the spatial coherence of the weight map. However, TV penalization leads to non-smooth optimization problems that are hard to minimize. We propose an optimization framework that minimizes any combination of ℓ1, ℓ2, and TV penalties while preserving the exact ℓ1 penalty. This algorithm uses Nesterov's smoothing technique to approximate the TV penalty with a smooth function such that the loss and the penalties are minimized with an exact accelerated proximal gradient algorithm. We propose an original continuation algorithm that uses successively smaller values of the smoothing parameter to reach a prescribed precision while achieving the best possible convergence rate. This algorithm can be used with other losses or penalties. The algorithm is applied on a classification problem on the ADNI dataset. We observe that the TV penalty does not necessarily improve the prediction but provides a major breakthrough in terms of support recovery of the predictive brain regions.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Predictive support recovery with TV-Elastic Net penalty and logistic regression: An application to structural MRI\",\"authors\":\"Mathieu Dubois, F. Hadj-Selem, Tommy Löfstedt, M. Perrot, C. Fischer, V. Frouin, E. Duchesnay\",\"doi\":\"10.1109/PRNI.2014.6858517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of machine-learning in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Although such multivariate methods can capture complex relationships in the data, traditional approaches provide irregular (ℓ2 penalty) or scattered (ℓ1 penalty) predictive pattern with a very limited relevance. A penalty like Total Variation (TV) that exploits the natural 3D structure of the images can increase the spatial coherence of the weight map. However, TV penalization leads to non-smooth optimization problems that are hard to minimize. We propose an optimization framework that minimizes any combination of ℓ1, ℓ2, and TV penalties while preserving the exact ℓ1 penalty. This algorithm uses Nesterov's smoothing technique to approximate the TV penalty with a smooth function such that the loss and the penalties are minimized with an exact accelerated proximal gradient algorithm. We propose an original continuation algorithm that uses successively smaller values of the smoothing parameter to reach a prescribed precision while achieving the best possible convergence rate. This algorithm can be used with other losses or penalties. The algorithm is applied on a classification problem on the ADNI dataset. We observe that the TV penalty does not necessarily improve the prediction but provides a major breakthrough in terms of support recovery of the predictive brain regions.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

机器学习在神经影像学中的应用为脑部疾病的早期诊断和预后提供了新的视角。尽管这种多变量方法可以捕获数据中的复杂关系,但传统方法提供的是相关性非常有限的不规则(l2惩罚)或分散(l1惩罚)预测模式。像TV这样利用图像自然3D结构的惩罚可以增加权重图的空间一致性。然而,TV惩罚会导致难以最小化的非平滑优化问题。我们提出了一个优化框架,最小化任意组合的l_1, l_2和TV惩罚,同时保持精确的l_1惩罚。该算法使用Nesterov平滑技术用平滑函数近似TV惩罚,使得损失和惩罚通过精确的加速近端梯度算法最小化。我们提出了一种原始的连续算法,该算法使用连续较小的平滑参数值来达到规定的精度,同时达到最佳的收敛速度。该算法可用于其他损失或处罚。将该算法应用于ADNI数据集的分类问题。我们观察到,电视惩罚不一定提高预测,但在支持恢复预测脑区方面提供了重大突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive support recovery with TV-Elastic Net penalty and logistic regression: An application to structural MRI
The use of machine-learning in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Although such multivariate methods can capture complex relationships in the data, traditional approaches provide irregular (ℓ2 penalty) or scattered (ℓ1 penalty) predictive pattern with a very limited relevance. A penalty like Total Variation (TV) that exploits the natural 3D structure of the images can increase the spatial coherence of the weight map. However, TV penalization leads to non-smooth optimization problems that are hard to minimize. We propose an optimization framework that minimizes any combination of ℓ1, ℓ2, and TV penalties while preserving the exact ℓ1 penalty. This algorithm uses Nesterov's smoothing technique to approximate the TV penalty with a smooth function such that the loss and the penalties are minimized with an exact accelerated proximal gradient algorithm. We propose an original continuation algorithm that uses successively smaller values of the smoothing parameter to reach a prescribed precision while achieving the best possible convergence rate. This algorithm can be used with other losses or penalties. The algorithm is applied on a classification problem on the ADNI dataset. We observe that the TV penalty does not necessarily improve the prediction but provides a major breakthrough in terms of support recovery of the predictive brain regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1