多传感器活动识别的智能数据标注工具

Alexander Diete, T. Sztyler, H. Stuckenschmidt
{"title":"多传感器活动识别的智能数据标注工具","authors":"Alexander Diete, T. Sztyler, H. Stuckenschmidt","doi":"10.1109/PERCOMW.2017.7917542","DOIUrl":null,"url":null,"abstract":"Annotation of multimodal data sets is often a time consuming and a challenging task as many approaches require an accurate labeling. This includes in particular video recordings as often labeling exact to a frame is required. For that purpose, we created an annotation tool that enables to annotate data sets of video and inertial sensor data. However, in contrast to the most existing approaches, we focus on semi-supervised labeling support to infer labels for the whole dataset. More precisely, after labeling a small set of instances our system is able to provide labeling recommendations and in turn it makes learning of image features more feasible by speeding up the labeling time for single frames. We aim to rely on the inertial sensors of our wristband to support the labeling of video recordings. For that purpose, we apply template matching in context of dynamic time warping to identify time intervals of certain actions. To investigate the feasibility of our approach we focus on a real world scenario, i.e., we gathered a data set which describes an order picking scenario of a logistic company. In this context, we focus on the picking process as the selection of the correct items can be prone to errors. Preliminary results show that we are able to identify 69% of the grabbing motion periods of time.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"661 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A smart data annotation tool for multi-sensor activity recognition\",\"authors\":\"Alexander Diete, T. Sztyler, H. Stuckenschmidt\",\"doi\":\"10.1109/PERCOMW.2017.7917542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annotation of multimodal data sets is often a time consuming and a challenging task as many approaches require an accurate labeling. This includes in particular video recordings as often labeling exact to a frame is required. For that purpose, we created an annotation tool that enables to annotate data sets of video and inertial sensor data. However, in contrast to the most existing approaches, we focus on semi-supervised labeling support to infer labels for the whole dataset. More precisely, after labeling a small set of instances our system is able to provide labeling recommendations and in turn it makes learning of image features more feasible by speeding up the labeling time for single frames. We aim to rely on the inertial sensors of our wristband to support the labeling of video recordings. For that purpose, we apply template matching in context of dynamic time warping to identify time intervals of certain actions. To investigate the feasibility of our approach we focus on a real world scenario, i.e., we gathered a data set which describes an order picking scenario of a logistic company. In this context, we focus on the picking process as the selection of the correct items can be prone to errors. Preliminary results show that we are able to identify 69% of the grabbing motion periods of time.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"661 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

多模态数据集的标注通常是一项耗时且具有挑战性的任务,因为许多方法需要准确的标注。这包括特别的视频记录,因为通常需要精确地标记到帧。为此,我们创建了一个注释工具,可以对视频和惯性传感器数据集进行注释。然而,与大多数现有方法相比,我们专注于半监督标记支持来推断整个数据集的标签。更准确地说,在标记一小部分实例后,我们的系统能够提供标记建议,反过来,通过加快单帧的标记时间,它使图像特征的学习更加可行。我们的目标是依靠我们腕带的惯性传感器来支持视频记录的标记。为此,我们在动态时间翘曲上下文中应用模板匹配来识别某些动作的时间间隔。为了研究我们的方法的可行性,我们将重点放在一个真实世界的场景上,即,我们收集了一个数据集,该数据集描述了一个物流公司的订单挑选场景。在这种情况下,我们关注挑选过程,因为选择正确的项目可能容易出错。初步结果表明,我们能够识别69%的抓取运动时间段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A smart data annotation tool for multi-sensor activity recognition
Annotation of multimodal data sets is often a time consuming and a challenging task as many approaches require an accurate labeling. This includes in particular video recordings as often labeling exact to a frame is required. For that purpose, we created an annotation tool that enables to annotate data sets of video and inertial sensor data. However, in contrast to the most existing approaches, we focus on semi-supervised labeling support to infer labels for the whole dataset. More precisely, after labeling a small set of instances our system is able to provide labeling recommendations and in turn it makes learning of image features more feasible by speeding up the labeling time for single frames. We aim to rely on the inertial sensors of our wristband to support the labeling of video recordings. For that purpose, we apply template matching in context of dynamic time warping to identify time intervals of certain actions. To investigate the feasibility of our approach we focus on a real world scenario, i.e., we gathered a data set which describes an order picking scenario of a logistic company. In this context, we focus on the picking process as the selection of the correct items can be prone to errors. Preliminary results show that we are able to identify 69% of the grabbing motion periods of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1