Alberto F. de Souza, Fábio Daros Freitas, Andre Gustavo Coelho de Almeida
{"title":"基于VG-RAM失重神经网络的股票收益高性能预测","authors":"Alberto F. de Souza, Fábio Daros Freitas, Andre Gustavo Coelho de Almeida","doi":"10.1109/WHPCF.2010.5671832","DOIUrl":null,"url":null,"abstract":"This work presents a new weightless neural network-based time series predictor that uses Virtual Generalized Random Access Memory weightless neural network to predict future stock returns. This new predictor was evaluated in predicting future weekly returns of 46 stocks from the Brazilian stock market. Our results showed that Virtual Generalized Random Access Memory weightless neural network predictors can produce predictions of future stock returns with the same error levels and properties of baseline autoregressive neural network predictors, however, running 5,000 times faster.","PeriodicalId":408567,"journal":{"name":"2010 IEEE Workshop on High Performance Computational Finance","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"High performance prediction of stock returns with VG-RAM weightless neural networks\",\"authors\":\"Alberto F. de Souza, Fábio Daros Freitas, Andre Gustavo Coelho de Almeida\",\"doi\":\"10.1109/WHPCF.2010.5671832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new weightless neural network-based time series predictor that uses Virtual Generalized Random Access Memory weightless neural network to predict future stock returns. This new predictor was evaluated in predicting future weekly returns of 46 stocks from the Brazilian stock market. Our results showed that Virtual Generalized Random Access Memory weightless neural network predictors can produce predictions of future stock returns with the same error levels and properties of baseline autoregressive neural network predictors, however, running 5,000 times faster.\",\"PeriodicalId\":408567,\"journal\":{\"name\":\"2010 IEEE Workshop on High Performance Computational Finance\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Workshop on High Performance Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHPCF.2010.5671832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHPCF.2010.5671832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
本文提出了一种新的基于无权重神经网络的时间序列预测器,该预测器使用虚拟广义随机存取记忆无权重神经网络来预测未来股票收益。在预测巴西股市46只股票的未来周收益时,对这个新的预测器进行了评估。我们的研究结果表明,虚拟广义随机存取记忆(Virtual Generalized Random Access Memory)无权重神经网络预测器可以产生与基线自回归神经网络预测器相同的误差水平和属性的未来股票收益预测,但运行速度快5000倍。
High performance prediction of stock returns with VG-RAM weightless neural networks
This work presents a new weightless neural network-based time series predictor that uses Virtual Generalized Random Access Memory weightless neural network to predict future stock returns. This new predictor was evaluated in predicting future weekly returns of 46 stocks from the Brazilian stock market. Our results showed that Virtual Generalized Random Access Memory weightless neural network predictors can produce predictions of future stock returns with the same error levels and properties of baseline autoregressive neural network predictors, however, running 5,000 times faster.