基于代表性任务选择的聚类终身学习

Gan Sun, Yang Cong, Yu Kong, Xiaowei Xu
{"title":"基于代表性任务选择的聚类终身学习","authors":"Gan Sun, Yang Cong, Yu Kong, Xiaowei Xu","doi":"10.1109/ICDM.2018.00167","DOIUrl":null,"url":null,"abstract":"Consider the lifelong machine learning problem where the objective is to learn new consecutive tasks depending on previously accumulated experiences, i.e., knowledge library. In comparison with most state-of-the-arts which adopt knowledge library with prescribed size, in this paper, we propose a new incremental clustered lifelong learning model with two libraries: feature library and model library, called Clustered Lifelong Learning (CL3), in which the feature library maintains a set of learned features common across all the encountered tasks, and the model library is learned by identifying and adding representative models (clusters). When a new task arrives, the original task model can be firstly reconstructed by representative models measured by capped l2-norm distance, i.e., effectively assigning the new task model to multiple representative models under feature library. Based on this assignment knowledge of new task, the objective of our CL3 model is to transfer the knowledge from both feature library and model library to learn the new task. The new task 1) with a higher outlier probability will then be judged as a new representative, and used to refine both feature library and representative models over time; 2) with lower outlier probability will only update the feature library. For the model optimisation, we cast this problem as an alternating direction minimization problem. To this end, the performance of CL3 is evaluated through comparing with most lifelong learning models, even some batch clustered multi-task learning models.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustered Lifelong Learning Via Representative Task Selection\",\"authors\":\"Gan Sun, Yang Cong, Yu Kong, Xiaowei Xu\",\"doi\":\"10.1109/ICDM.2018.00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the lifelong machine learning problem where the objective is to learn new consecutive tasks depending on previously accumulated experiences, i.e., knowledge library. In comparison with most state-of-the-arts which adopt knowledge library with prescribed size, in this paper, we propose a new incremental clustered lifelong learning model with two libraries: feature library and model library, called Clustered Lifelong Learning (CL3), in which the feature library maintains a set of learned features common across all the encountered tasks, and the model library is learned by identifying and adding representative models (clusters). When a new task arrives, the original task model can be firstly reconstructed by representative models measured by capped l2-norm distance, i.e., effectively assigning the new task model to multiple representative models under feature library. Based on this assignment knowledge of new task, the objective of our CL3 model is to transfer the knowledge from both feature library and model library to learn the new task. The new task 1) with a higher outlier probability will then be judged as a new representative, and used to refine both feature library and representative models over time; 2) with lower outlier probability will only update the feature library. For the model optimisation, we cast this problem as an alternating direction minimization problem. To this end, the performance of CL3 is evaluated through comparing with most lifelong learning models, even some batch clustered multi-task learning models.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑终身机器学习问题,其目标是根据以前积累的经验(即知识库)学习新的连续任务。与目前大多数采用指定大小知识库的方法相比,本文提出了一种新的增量式聚类终身学习模型,该模型包含两个库:特征库和模型库,称为聚类终身学习(CL3),其中特征库维护一组在所有遇到的任务中常见的学习特征,模型库通过识别和添加代表性模型(聚类)来学习。当有新任务到达时,可以先用上限12范数距离测量的代表性模型重构原任务模型,即有效地将新任务模型分配给特征库下的多个代表性模型。基于这种新任务的指派知识,我们的CL3模型的目标是从特征库和模型库中转移知识来学习新任务。具有较高离群概率的新任务1)将被判断为新的代表,并用于随着时间的推移改进特征库和代表模型;2)较低离群概率只会更新特征库。对于模型优化,我们把这个问题作为一个交替方向最小化问题。为此,通过与大多数终身学习模型,甚至一些批聚类多任务学习模型的比较来评估CL3的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustered Lifelong Learning Via Representative Task Selection
Consider the lifelong machine learning problem where the objective is to learn new consecutive tasks depending on previously accumulated experiences, i.e., knowledge library. In comparison with most state-of-the-arts which adopt knowledge library with prescribed size, in this paper, we propose a new incremental clustered lifelong learning model with two libraries: feature library and model library, called Clustered Lifelong Learning (CL3), in which the feature library maintains a set of learned features common across all the encountered tasks, and the model library is learned by identifying and adding representative models (clusters). When a new task arrives, the original task model can be firstly reconstructed by representative models measured by capped l2-norm distance, i.e., effectively assigning the new task model to multiple representative models under feature library. Based on this assignment knowledge of new task, the objective of our CL3 model is to transfer the knowledge from both feature library and model library to learn the new task. The new task 1) with a higher outlier probability will then be judged as a new representative, and used to refine both feature library and representative models over time; 2) with lower outlier probability will only update the feature library. For the model optimisation, we cast this problem as an alternating direction minimization problem. To this end, the performance of CL3 is evaluated through comparing with most lifelong learning models, even some batch clustered multi-task learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1