基于李群理论的AUV模型预测控制方法

Ronghao Zhang, Xinhua Zhao, Hanwen Zhou, Xiufen Ye
{"title":"基于李群理论的AUV模型预测控制方法","authors":"Ronghao Zhang, Xinhua Zhao, Hanwen Zhou, Xiufen Ye","doi":"10.1109/ICMA57826.2023.10216092","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) can solve the constraint problems of the unmanned system control. However, the model of autonomous underwater vehicle (AUV) is nonlinear, and the Jacobian matrix changes with the state of the AUV, so the traditional linear MPC method is no longer applicable. This paper presents an MPC motion control method based on Lie group theory. We represented the attitude, velocity and position errors of an AUV as an element in the Lie group, and linearized the MPC model by combining the dynamic model of the AUV, so that the Jacobian matrix is only related to the expected value, and the control performance is improved. Simulation results show that, compared with the traditional MPC algorithm, the algorithm in this paper shows stronger robustness when the AUV suffers from large disturbance and state expectation mutation.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Control Method of AUV Based on Lie Group Theory\",\"authors\":\"Ronghao Zhang, Xinhua Zhao, Hanwen Zhou, Xiufen Ye\",\"doi\":\"10.1109/ICMA57826.2023.10216092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) can solve the constraint problems of the unmanned system control. However, the model of autonomous underwater vehicle (AUV) is nonlinear, and the Jacobian matrix changes with the state of the AUV, so the traditional linear MPC method is no longer applicable. This paper presents an MPC motion control method based on Lie group theory. We represented the attitude, velocity and position errors of an AUV as an element in the Lie group, and linearized the MPC model by combining the dynamic model of the AUV, so that the Jacobian matrix is only related to the expected value, and the control performance is improved. Simulation results show that, compared with the traditional MPC algorithm, the algorithm in this paper shows stronger robustness when the AUV suffers from large disturbance and state expectation mutation.\",\"PeriodicalId\":151364,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA57826.2023.10216092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10216092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模型预测控制(MPC)可以解决无人系统控制中的约束问题。然而,自主水下航行器(AUV)的模型是非线性的,雅可比矩阵随着AUV的状态而变化,传统的线性MPC方法已不再适用。提出了一种基于李群理论的MPC运动控制方法。将水下航行器的姿态、速度和位置误差表示为李群中的一个元素,并结合水下航行器的动态模型对MPC模型进行线性化处理,使雅可比矩阵只与期望值相关,提高了控制性能。仿真结果表明,与传统的MPC算法相比,本文算法在水下机器人遭受较大干扰和状态期望突变时具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Predictive Control Method of AUV Based on Lie Group Theory
Model predictive control (MPC) can solve the constraint problems of the unmanned system control. However, the model of autonomous underwater vehicle (AUV) is nonlinear, and the Jacobian matrix changes with the state of the AUV, so the traditional linear MPC method is no longer applicable. This paper presents an MPC motion control method based on Lie group theory. We represented the attitude, velocity and position errors of an AUV as an element in the Lie group, and linearized the MPC model by combining the dynamic model of the AUV, so that the Jacobian matrix is only related to the expected value, and the control performance is improved. Simulation results show that, compared with the traditional MPC algorithm, the algorithm in this paper shows stronger robustness when the AUV suffers from large disturbance and state expectation mutation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICMA 2023 Conference Info A Parameter Fluctuation Impact Analysis Algorithm for The Control of Sealing Performance Stability Research on Composite Control Strategy of Off-Grid PV Inverter under Nonlinear Asymmetric Load A Low-Cost Skiing Motion Capture System Based on Monocular RGB Camera and MINS Fusion INS/GNSS/UWB/OD Robust Navigation Algorithm Based on Factor Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1