基于生成对抗网络的复杂目标深度估计的早期经验

Wai Y. K. San, Teng Zhang, Shaokang Chen, A. Wiliem, Dario Stefanelli, B. Lovell
{"title":"基于生成对抗网络的复杂目标深度估计的早期经验","authors":"Wai Y. K. San, Teng Zhang, Shaokang Chen, A. Wiliem, Dario Stefanelli, B. Lovell","doi":"10.1109/DICTA.2018.8615783","DOIUrl":null,"url":null,"abstract":"Object parts within a scene observed by the human eye exhibit their own unique depth. Producing a single image with an accurate depth of field has many implications, namely: virtual and augmented reality, mobile robotics, digital photography and medical imaging. In this work, we aim to exploit the effectiveness of conditional Generative Adversarial Networks (GAN) to improve depth estimation from a singular inexpensive monocular sensor camera sensor. The complexity of an object shape, texture and environmental conditions make depth estimations challenging. Our approach is evaluated on our novel depth map dataset we release publicly containing the challenging photo-depth image pairs. Standard evaluation metrics against other depth map estimation techniques demonstrates the effectiveness of our approach. A study of the effectiveness of GAN on different test data is demonstrated both qualitatively and quantitatively.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Experience of Depth Estimation on Intricate Objects using Generative Adversarial Networks\",\"authors\":\"Wai Y. K. San, Teng Zhang, Shaokang Chen, A. Wiliem, Dario Stefanelli, B. Lovell\",\"doi\":\"10.1109/DICTA.2018.8615783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object parts within a scene observed by the human eye exhibit their own unique depth. Producing a single image with an accurate depth of field has many implications, namely: virtual and augmented reality, mobile robotics, digital photography and medical imaging. In this work, we aim to exploit the effectiveness of conditional Generative Adversarial Networks (GAN) to improve depth estimation from a singular inexpensive monocular sensor camera sensor. The complexity of an object shape, texture and environmental conditions make depth estimations challenging. Our approach is evaluated on our novel depth map dataset we release publicly containing the challenging photo-depth image pairs. Standard evaluation metrics against other depth map estimation techniques demonstrates the effectiveness of our approach. A study of the effectiveness of GAN on different test data is demonstrated both qualitatively and quantitatively.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人眼所观察到的场景中的物体各部分都有其独特的深度。产生具有准确景深的单幅图像具有许多含义,即:虚拟和增强现实,移动机器人,数字摄影和医学成像。在这项工作中,我们的目标是利用条件生成对抗网络(GAN)的有效性来改进单一廉价的单目传感器相机传感器的深度估计。物体形状、纹理和环境条件的复杂性使得深度估计具有挑战性。我们的方法在我们公开发布的包含具有挑战性的照片深度图像对的新型深度图数据集上进行了评估。针对其他深度图估计技术的标准评估指标证明了我们方法的有效性。本文从定性和定量两方面论证了氮化镓在不同测试数据上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Experience of Depth Estimation on Intricate Objects using Generative Adversarial Networks
Object parts within a scene observed by the human eye exhibit their own unique depth. Producing a single image with an accurate depth of field has many implications, namely: virtual and augmented reality, mobile robotics, digital photography and medical imaging. In this work, we aim to exploit the effectiveness of conditional Generative Adversarial Networks (GAN) to improve depth estimation from a singular inexpensive monocular sensor camera sensor. The complexity of an object shape, texture and environmental conditions make depth estimations challenging. Our approach is evaluated on our novel depth map dataset we release publicly containing the challenging photo-depth image pairs. Standard evaluation metrics against other depth map estimation techniques demonstrates the effectiveness of our approach. A study of the effectiveness of GAN on different test data is demonstrated both qualitatively and quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1