平均强度约束下具有高斯噪声的光纤窃听信道速率模糊区的新结果

Morteza Soltani, Z. Rezki
{"title":"平均强度约束下具有高斯噪声的光纤窃听信道速率模糊区的新结果","authors":"Morteza Soltani, Z. Rezki","doi":"10.1109/ITA50056.2020.9245013","DOIUrl":null,"url":null,"abstract":"This paper studies the degraded optical wiretap channel with an input-dependent Gaussian noise when the channel input is only constrained by nonnegativity and average-intensity constraints. We consider the rate-equivocation region of this wiretap channel and through solving a convex optimization problem, we establish that discrete input distributions with an infinite number of mass points exhaust the entire rate-equivocation region of the degraded OWC-IDGN with non-negativity and average-intensity constraints. This result implies that when nonnegativity and average-intensity constraints are imposed on the channel input: 1) the secrecy-capacity-achieving input distribution of the degraded OWC-IDGN is discrete with an unbounded support, i.e., the support set of the optimal distribution is countably infinite; 2) the channel capacity (the case with no secrecy constraints) is also achieved by a discrete distribution with an unbounded support set.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Results on The Rate-Equivocation Region of The Optical Wiretap Channel with Input-Dependent Gaussian Noise with an Average-Intensity Constraint\",\"authors\":\"Morteza Soltani, Z. Rezki\",\"doi\":\"10.1109/ITA50056.2020.9245013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the degraded optical wiretap channel with an input-dependent Gaussian noise when the channel input is only constrained by nonnegativity and average-intensity constraints. We consider the rate-equivocation region of this wiretap channel and through solving a convex optimization problem, we establish that discrete input distributions with an infinite number of mass points exhaust the entire rate-equivocation region of the degraded OWC-IDGN with non-negativity and average-intensity constraints. This result implies that when nonnegativity and average-intensity constraints are imposed on the channel input: 1) the secrecy-capacity-achieving input distribution of the degraded OWC-IDGN is discrete with an unbounded support, i.e., the support set of the optimal distribution is countably infinite; 2) the channel capacity (the case with no secrecy constraints) is also achieved by a discrete distribution with an unbounded support set.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9245013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9245013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了当信道输入仅受非负性和平均强度约束时,具有输入依赖高斯噪声的退化光窃听信道。我们考虑了该窃听信道的速率模糊区域,并通过求解一个凸优化问题,建立了具有无限数量质量点的离散输入分布耗尽了具有非负性和平均强度约束的退化OWC-IDGN的整个速率模糊区域。结果表明,当信道输入存在非负性约束和平均强度约束时:1)退化OWC-IDGN的保密能力实现输入分布是离散的,且支持无界,即最优分布的支持集是可数无限的;2)信道容量(无保密约束的情况)也通过具有无界支持集的离散分布来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Results on The Rate-Equivocation Region of The Optical Wiretap Channel with Input-Dependent Gaussian Noise with an Average-Intensity Constraint
This paper studies the degraded optical wiretap channel with an input-dependent Gaussian noise when the channel input is only constrained by nonnegativity and average-intensity constraints. We consider the rate-equivocation region of this wiretap channel and through solving a convex optimization problem, we establish that discrete input distributions with an infinite number of mass points exhaust the entire rate-equivocation region of the degraded OWC-IDGN with non-negativity and average-intensity constraints. This result implies that when nonnegativity and average-intensity constraints are imposed on the channel input: 1) the secrecy-capacity-achieving input distribution of the degraded OWC-IDGN is discrete with an unbounded support, i.e., the support set of the optimal distribution is countably infinite; 2) the channel capacity (the case with no secrecy constraints) is also achieved by a discrete distribution with an unbounded support set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1