阿萨姆语、孟加拉语和英语语音的语言识别

Joyshree Chakraborty, Shikhamoni Nath, R. NirmalaS., K. Samudravijaya
{"title":"阿萨姆语、孟加拉语和英语语音的语言识别","authors":"Joyshree Chakraborty, Shikhamoni Nath, R. NirmalaS., K. Samudravijaya","doi":"10.21437/SLTU.2018-37","DOIUrl":null,"url":null,"abstract":"Machine identification of the language of input speech is of practical interest in regions where people are either bilingual or multi-lingual. Here, we present the development of automatic language identification system that identifies the language of input speech as one of Assamese or Bengali or English spoken by them. The speech databases comprise of sentences read by multiple speakers using their mobile phones. Kaldi toolkit was used to train acoustic models based on hidden Markov model in conjunction with Gaussian mixture models and deep neural networks. The accuracy of the implemented language identification system for test data is 99.3%.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Language Identification of Assamese, Bengali and English Speech\",\"authors\":\"Joyshree Chakraborty, Shikhamoni Nath, R. NirmalaS., K. Samudravijaya\",\"doi\":\"10.21437/SLTU.2018-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine identification of the language of input speech is of practical interest in regions where people are either bilingual or multi-lingual. Here, we present the development of automatic language identification system that identifies the language of input speech as one of Assamese or Bengali or English spoken by them. The speech databases comprise of sentences read by multiple speakers using their mobile phones. Kaldi toolkit was used to train acoustic models based on hidden Markov model in conjunction with Gaussian mixture models and deep neural networks. The accuracy of the implemented language identification system for test data is 99.3%.\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SLTU.2018-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器识别输入语音的语言在人们使用双语或多语言的地区具有实际意义。在这里,我们提出了自动语言识别系统的开发,该系统将输入语音识别为他们所说的阿萨姆语或孟加拉语或英语中的一种。语音数据库由多个说话者使用手机朗读的句子组成。利用Kaldi工具集,结合高斯混合模型和深度神经网络,训练基于隐马尔可夫模型的声学模型。所实现的语言识别系统对测试数据的准确率为99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Language Identification of Assamese, Bengali and English Speech
Machine identification of the language of input speech is of practical interest in regions where people are either bilingual or multi-lingual. Here, we present the development of automatic language identification system that identifies the language of input speech as one of Assamese or Bengali or English spoken by them. The speech databases comprise of sentences read by multiple speakers using their mobile phones. Kaldi toolkit was used to train acoustic models based on hidden Markov model in conjunction with Gaussian mixture models and deep neural networks. The accuracy of the implemented language identification system for test data is 99.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1