地震荷载作用下隧道上拔性能的数值分析

Tan Manh Do, Anh Ngoc Do, Hung Trong Vo
{"title":"地震荷载作用下隧道上拔性能的数值分析","authors":"Tan Manh Do, Anh Ngoc Do, Hung Trong Vo","doi":"10.46326/jmes.2022.63(3a).01","DOIUrl":null,"url":null,"abstract":"Seismic loading has always been a major concern for any engineering structures, and thereby, underground facilities (e.g., tunnels) are not exceptional. It is due to the seismically induced uplift and instability of tunnels caused by the large deformation of liquefiable soils. Therefore, the tunnel uplift behaviors subjected to seismic loading are always taken into account in any designing stages of tunnels. This study's main goal was to evaluate how a tunnel buried in liquefiable and non-liquefiable soils would behave when subjected to seismic stress. Seismic and liquefaction potential assessments of the soils surrounding the tunnel were carried out using the finite-element method. In this study, PM4sand, an advanced constitutive model was adopted in all finite-element models. In addition, the uplift displacement and excess pore pressure of liquefiable soils were studied, under a typical earthquake. Investigations were also conducted into how the thickness of the non-liquefiable soil affected seismic loading, tunnel uplift displacement, and the buildup of excess pore water pressure. As a result, during the earthquake, liquefaction was triggered in most parts of the sand layer but not in the clay layer. In addition, the tunnel uplift displacement was triggered due to the relative motion and interaction at both sides of the tunnel. In addition, this study found that the thickness of the non-liquefiable soil layer (sand layer) had a significant impact on the build-up of excess pore water pressure and, consequently, the tunnel uplift displacement. The uplift displacement and excess pore water pressure build-up were higher the thinner the non-liquefiable layer was.","PeriodicalId":170167,"journal":{"name":"Journal of Mining and Earth Sciences","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical analysis of the tunnel uplift behavior subjected to seismic loading\",\"authors\":\"Tan Manh Do, Anh Ngoc Do, Hung Trong Vo\",\"doi\":\"10.46326/jmes.2022.63(3a).01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic loading has always been a major concern for any engineering structures, and thereby, underground facilities (e.g., tunnels) are not exceptional. It is due to the seismically induced uplift and instability of tunnels caused by the large deformation of liquefiable soils. Therefore, the tunnel uplift behaviors subjected to seismic loading are always taken into account in any designing stages of tunnels. This study's main goal was to evaluate how a tunnel buried in liquefiable and non-liquefiable soils would behave when subjected to seismic stress. Seismic and liquefaction potential assessments of the soils surrounding the tunnel were carried out using the finite-element method. In this study, PM4sand, an advanced constitutive model was adopted in all finite-element models. In addition, the uplift displacement and excess pore pressure of liquefiable soils were studied, under a typical earthquake. Investigations were also conducted into how the thickness of the non-liquefiable soil affected seismic loading, tunnel uplift displacement, and the buildup of excess pore water pressure. As a result, during the earthquake, liquefaction was triggered in most parts of the sand layer but not in the clay layer. In addition, the tunnel uplift displacement was triggered due to the relative motion and interaction at both sides of the tunnel. In addition, this study found that the thickness of the non-liquefiable soil layer (sand layer) had a significant impact on the build-up of excess pore water pressure and, consequently, the tunnel uplift displacement. The uplift displacement and excess pore water pressure build-up were higher the thinner the non-liquefiable layer was.\",\"PeriodicalId\":170167,\"journal\":{\"name\":\"Journal of Mining and Earth Sciences\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46326/jmes.2022.63(3a).01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46326/jmes.2022.63(3a).01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地震荷载一直是任何工程结构关注的主要问题,因此,地下设施(如隧道)也不例外。这是由于地震引起的可液化土的大变形引起隧道的隆起和失稳。因此,在隧道设计的任何阶段,都要考虑地震荷载作用下隧道的隆起行为。本研究的主要目的是评估埋在可液化和非液化土壤中的隧道在地震应力作用下的表现。采用有限元法对隧道周围土体进行了地震和液化潜力评价。在本研究中,所有的有限元模型均采用了先进的本构模型PM4sand。此外,还研究了典型地震作用下可液化土的上拔位移和超孔隙压力。研究了非液化土的厚度对地震荷载、隧道上拔位移和超孔隙水压力的影响。因此,在地震中,大部分砂层触发了液化,而粘土层没有。此外,隧道两侧的相对运动和相互作用引发了隧道的隆升位移。此外,本研究还发现,不可液化土层(砂层)的厚度对超孔隙水压力的积累有显著影响,从而影响隧道的上拔位移。不可液化层越薄,抬升位移和超孔隙水压力累积越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical analysis of the tunnel uplift behavior subjected to seismic loading
Seismic loading has always been a major concern for any engineering structures, and thereby, underground facilities (e.g., tunnels) are not exceptional. It is due to the seismically induced uplift and instability of tunnels caused by the large deformation of liquefiable soils. Therefore, the tunnel uplift behaviors subjected to seismic loading are always taken into account in any designing stages of tunnels. This study's main goal was to evaluate how a tunnel buried in liquefiable and non-liquefiable soils would behave when subjected to seismic stress. Seismic and liquefaction potential assessments of the soils surrounding the tunnel were carried out using the finite-element method. In this study, PM4sand, an advanced constitutive model was adopted in all finite-element models. In addition, the uplift displacement and excess pore pressure of liquefiable soils were studied, under a typical earthquake. Investigations were also conducted into how the thickness of the non-liquefiable soil affected seismic loading, tunnel uplift displacement, and the buildup of excess pore water pressure. As a result, during the earthquake, liquefaction was triggered in most parts of the sand layer but not in the clay layer. In addition, the tunnel uplift displacement was triggered due to the relative motion and interaction at both sides of the tunnel. In addition, this study found that the thickness of the non-liquefiable soil layer (sand layer) had a significant impact on the build-up of excess pore water pressure and, consequently, the tunnel uplift displacement. The uplift displacement and excess pore water pressure build-up were higher the thinner the non-liquefiable layer was.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESP Application for Oil Production in Naturally Fractured Granitic Basement Reservoir Comparison analytical hierarchy process (AHP) and frequency ratio (FR) method in assessment of landslide susceptibility. A case study in Van Yen district, Yen Bai province Deep geological structure of An Chau trough base on new study data Assessment of liquefaction potential of sand distributed in the 1 District, Ho Chi Minh city Geotechnical zoning in Hai Duong province for construction planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1