{"title":"使用搜索引擎建模非组合表达式","authors":"Cheikh M. Bamba Dione, Christer Johansson","doi":"10.29007/4JL9","DOIUrl":null,"url":null,"abstract":"Non-compositional multi-word expressions present great challenges to natural language processing applications. In this paper, we present a method for modeling non-compositional expressions based on the assumption that the meaning of expressions depends on context. Therefore, context words can be used to select documents and separate documents where the expression has different meanings. Deviation from a baseline is measured using serendipity (i.e. the pointwise effect size). We used this statistical measure to mark which patterns are over-and under-represented and to take a decision if the pattern under scrutiny belongs to the meaning selected by the context words or not. We used the Google search engine to find document frequency estimates. When used with Google document frequency estimates, the serendipity measure closely mirrors some human intuitions on the preferred alternative.","PeriodicalId":277939,"journal":{"name":"2018 9th International Conference on Awareness Science and Technology (iCAST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Non-Compositional Expressions using a Search Engine\",\"authors\":\"Cheikh M. Bamba Dione, Christer Johansson\",\"doi\":\"10.29007/4JL9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-compositional multi-word expressions present great challenges to natural language processing applications. In this paper, we present a method for modeling non-compositional expressions based on the assumption that the meaning of expressions depends on context. Therefore, context words can be used to select documents and separate documents where the expression has different meanings. Deviation from a baseline is measured using serendipity (i.e. the pointwise effect size). We used this statistical measure to mark which patterns are over-and under-represented and to take a decision if the pattern under scrutiny belongs to the meaning selected by the context words or not. We used the Google search engine to find document frequency estimates. When used with Google document frequency estimates, the serendipity measure closely mirrors some human intuitions on the preferred alternative.\",\"PeriodicalId\":277939,\"journal\":{\"name\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/4JL9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/4JL9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Non-Compositional Expressions using a Search Engine
Non-compositional multi-word expressions present great challenges to natural language processing applications. In this paper, we present a method for modeling non-compositional expressions based on the assumption that the meaning of expressions depends on context. Therefore, context words can be used to select documents and separate documents where the expression has different meanings. Deviation from a baseline is measured using serendipity (i.e. the pointwise effect size). We used this statistical measure to mark which patterns are over-and under-represented and to take a decision if the pattern under scrutiny belongs to the meaning selected by the context words or not. We used the Google search engine to find document frequency estimates. When used with Google document frequency estimates, the serendipity measure closely mirrors some human intuitions on the preferred alternative.