均相{Ti2Ni}杂三核催化剂用于乙烯聚合和共聚

L. F. M. Rocha, L. Ferreira, Maria Marques, R. Bitzer, M. Nascimento
{"title":"均相{Ti2Ni}杂三核催化剂用于乙烯聚合和共聚","authors":"L. F. M. Rocha, L. Ferreira, Maria Marques, R. Bitzer, M. Nascimento","doi":"10.21926/cr.2203020","DOIUrl":null,"url":null,"abstract":"We synthesized and spectroscopically characterized a new heterotrimetallic {Ti2Ni} ethylene (co)polymerization precatalyst containing one (α-diimine)NiBr2 and two (phenoxy-imine)TiCl4 scaffolds. Its calculated structure was investigated at the DFT B3LYP/LACVP** level. Our calculations showed that the titanium(IV) centers were in a slightly distorted trigonal bipyramidal environment, and the average Ti···Ni distance was 8.76 Å. The precatalyst was used for synthesizing polyethylene and ethylene copolymers. The results of GPC analyses showed that the obtained polyethylenes had the desired bimodal molecular weight distributions. The FTIR spectra revealed that polydispersity decreased as the vinyl end-group content increased. These results suggested that high mechanical resistance can increase the mechanical energy needed for processing the material. All 13C NMR signals were assigned to short-chain branches with specific spatial arrangements along the polymer backbone. The chain walking mechanism of branch formation controls the spacing and conformational arrangements between these short chains.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous {Ti2Ni} Heterotrinuclear Catalyst for Ethylene Polymerization and Copolymerization\",\"authors\":\"L. F. M. Rocha, L. Ferreira, Maria Marques, R. Bitzer, M. Nascimento\",\"doi\":\"10.21926/cr.2203020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesized and spectroscopically characterized a new heterotrimetallic {Ti2Ni} ethylene (co)polymerization precatalyst containing one (α-diimine)NiBr2 and two (phenoxy-imine)TiCl4 scaffolds. Its calculated structure was investigated at the DFT B3LYP/LACVP** level. Our calculations showed that the titanium(IV) centers were in a slightly distorted trigonal bipyramidal environment, and the average Ti···Ni distance was 8.76 Å. The precatalyst was used for synthesizing polyethylene and ethylene copolymers. The results of GPC analyses showed that the obtained polyethylenes had the desired bimodal molecular weight distributions. The FTIR spectra revealed that polydispersity decreased as the vinyl end-group content increased. These results suggested that high mechanical resistance can increase the mechanical energy needed for processing the material. All 13C NMR signals were assigned to short-chain branches with specific spatial arrangements along the polymer backbone. The chain walking mechanism of branch formation controls the spacing and conformational arrangements between these short chains.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2203020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2203020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成了一种新型杂三金属{Ti2Ni}乙烯(co)聚合预催化剂,该催化剂含有1个(α-二亚胺)NiBr2和2个(苯氧基亚胺)TiCl4支架。在DFT B3LYP/LACVP**水平上对其计算结构进行了研究。计算结果表明,钛(IV)中心处于轻微扭曲的三角双锥体环境,Ti···Ni平均距离为8.76 Å。该预催化剂用于合成聚乙烯和乙烯共聚物。GPC分析结果表明,所得聚乙烯具有理想的双峰分子量分布。FTIR光谱显示,随着乙烯基端基含量的增加,多分散性降低。这些结果表明,高机械阻力会增加加工材料所需的机械能。所有13C核磁共振信号都被分配到具有特定空间排列的短链分支上。分支形成的链走机制控制着这些短链之间的间距和构象排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Homogeneous {Ti2Ni} Heterotrinuclear Catalyst for Ethylene Polymerization and Copolymerization
We synthesized and spectroscopically characterized a new heterotrimetallic {Ti2Ni} ethylene (co)polymerization precatalyst containing one (α-diimine)NiBr2 and two (phenoxy-imine)TiCl4 scaffolds. Its calculated structure was investigated at the DFT B3LYP/LACVP** level. Our calculations showed that the titanium(IV) centers were in a slightly distorted trigonal bipyramidal environment, and the average Ti···Ni distance was 8.76 Å. The precatalyst was used for synthesizing polyethylene and ethylene copolymers. The results of GPC analyses showed that the obtained polyethylenes had the desired bimodal molecular weight distributions. The FTIR spectra revealed that polydispersity decreased as the vinyl end-group content increased. These results suggested that high mechanical resistance can increase the mechanical energy needed for processing the material. All 13C NMR signals were assigned to short-chain branches with specific spatial arrangements along the polymer backbone. The chain walking mechanism of branch formation controls the spacing and conformational arrangements between these short chains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1