{"title":"用分数阶模型研究非均质材料的性能:橡胶团块板","authors":"B. Alves","doi":"10.56578/peet020203","DOIUrl":null,"url":null,"abstract":"This paper aimed to analyze the properties of rubber agglomerate panel, a heterogeneous material. After making three adjustments using three classical differential fractional models, namely, the Scott-Blair model, the generalized fractional Maxwell model (FMM), and the 1D standard fractional viscoelastic order for fluids (SFVOF), this paper assessed the number of parameters in those models for rubber agglomerate panel, made from rubber grains and urea thermoplastic elastomer (TPE). Combining data published from an undergraduate thesis with Microsoft Excel software and the solver command, this paper obtained better sample results using four parameters, rather than two or three complicated material function equations. Data of Ribeiro Alves in 2019 came from hardness experiments. Then this paper transformed deformation data into creep compliance in accordance with equation J(t) = ε/t (mm/s), and obtained graphical adjustment representations, parameter values, and eventually adjustment equations. However, results from the modified FMM and 1D SFVOF were more comparable, and certain hypotheses were investigated to choose the better model. It was determined that the generalized FMM fit the data the best for this time period. With a certain margin of error, this model could be used for constructing new recycled materials and rubber agglomerate panel using Salvadori equipment. However, it is suggested that new and recent materials should be tested in order to solve environmental problems.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Properties of Heterogeneous Material Using Fractional Models: Rubber Agglomerate Panel\",\"authors\":\"B. Alves\",\"doi\":\"10.56578/peet020203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aimed to analyze the properties of rubber agglomerate panel, a heterogeneous material. After making three adjustments using three classical differential fractional models, namely, the Scott-Blair model, the generalized fractional Maxwell model (FMM), and the 1D standard fractional viscoelastic order for fluids (SFVOF), this paper assessed the number of parameters in those models for rubber agglomerate panel, made from rubber grains and urea thermoplastic elastomer (TPE). Combining data published from an undergraduate thesis with Microsoft Excel software and the solver command, this paper obtained better sample results using four parameters, rather than two or three complicated material function equations. Data of Ribeiro Alves in 2019 came from hardness experiments. Then this paper transformed deformation data into creep compliance in accordance with equation J(t) = ε/t (mm/s), and obtained graphical adjustment representations, parameter values, and eventually adjustment equations. However, results from the modified FMM and 1D SFVOF were more comparable, and certain hypotheses were investigated to choose the better model. It was determined that the generalized FMM fit the data the best for this time period. With a certain margin of error, this model could be used for constructing new recycled materials and rubber agglomerate panel using Salvadori equipment. However, it is suggested that new and recent materials should be tested in order to solve environmental problems.\",\"PeriodicalId\":422845,\"journal\":{\"name\":\"Power Engineering and Engineering Thermophysics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power Engineering and Engineering Thermophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56578/peet020203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power Engineering and Engineering Thermophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56578/peet020203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of Heterogeneous Material Using Fractional Models: Rubber Agglomerate Panel
This paper aimed to analyze the properties of rubber agglomerate panel, a heterogeneous material. After making three adjustments using three classical differential fractional models, namely, the Scott-Blair model, the generalized fractional Maxwell model (FMM), and the 1D standard fractional viscoelastic order for fluids (SFVOF), this paper assessed the number of parameters in those models for rubber agglomerate panel, made from rubber grains and urea thermoplastic elastomer (TPE). Combining data published from an undergraduate thesis with Microsoft Excel software and the solver command, this paper obtained better sample results using four parameters, rather than two or three complicated material function equations. Data of Ribeiro Alves in 2019 came from hardness experiments. Then this paper transformed deformation data into creep compliance in accordance with equation J(t) = ε/t (mm/s), and obtained graphical adjustment representations, parameter values, and eventually adjustment equations. However, results from the modified FMM and 1D SFVOF were more comparable, and certain hypotheses were investigated to choose the better model. It was determined that the generalized FMM fit the data the best for this time period. With a certain margin of error, this model could be used for constructing new recycled materials and rubber agglomerate panel using Salvadori equipment. However, it is suggested that new and recent materials should be tested in order to solve environmental problems.