基于传感器不相似度信息的几何KNN定位

D. Tran, Siyuan Gong, Quynh-Anh T. Vo
{"title":"基于传感器不相似度信息的几何KNN定位","authors":"D. Tran, Siyuan Gong, Quynh-Anh T. Vo","doi":"10.1109/PIMRC.2017.8292622","DOIUrl":null,"url":null,"abstract":"Location fingerprinting is a range-free approach to GPS-free localization. Conventionally, the fingerprint space is defined as a feature vector space where a fingerprint is a vector of location-sensitive measurements associated with a location. However, in practice, it is hard to find a quality feature space that is robust to device heterogeneity and environment and infrastructure dynamics. This paper advocates a fundamentally different model where a fingerprint is defined as a dissimilarity measurement associated with a pair of locations and proposes a localization approach based on geometric embedding.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Geometric-based KNN localization using sensor dissimilarity information\",\"authors\":\"D. Tran, Siyuan Gong, Quynh-Anh T. Vo\",\"doi\":\"10.1109/PIMRC.2017.8292622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location fingerprinting is a range-free approach to GPS-free localization. Conventionally, the fingerprint space is defined as a feature vector space where a fingerprint is a vector of location-sensitive measurements associated with a location. However, in practice, it is hard to find a quality feature space that is robust to device heterogeneity and environment and infrastructure dynamics. This paper advocates a fundamentally different model where a fingerprint is defined as a dissimilarity measurement associated with a pair of locations and proposes a localization approach based on geometric embedding.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

位置指纹是一种无距离定位的方法。传统上,指纹空间被定义为特征向量空间,其中指纹是与位置相关的位置敏感测量向量。然而,在实践中,很难找到一个高质量的特征空间,它对设备异构性、环境和基础设施动态具有鲁棒性。本文提出了一种完全不同的模型,将指纹定义为与一对位置相关的不相似性测量,并提出了一种基于几何嵌入的定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric-based KNN localization using sensor dissimilarity information
Location fingerprinting is a range-free approach to GPS-free localization. Conventionally, the fingerprint space is defined as a feature vector space where a fingerprint is a vector of location-sensitive measurements associated with a location. However, in practice, it is hard to find a quality feature space that is robust to device heterogeneity and environment and infrastructure dynamics. This paper advocates a fundamentally different model where a fingerprint is defined as a dissimilarity measurement associated with a pair of locations and proposes a localization approach based on geometric embedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RSSI-based self-localization with perturbed anchor positions Bit precision study of a non-orthogonal iterative detector with FPGA modelling verification Analytical approach to base station sleep mode power consumption and sleep depth Experimental over-the-air testing for coexistence of 4G and a spectrally efficient non-orthogonal signal Secrecy analysis of random wireless networks with multiple eavesdroppers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1