多智能体微分图形游戏:纳什在线自适应学习解决方案

M. Abouheaf, F. Lewis
{"title":"多智能体微分图形游戏:纳什在线自适应学习解决方案","authors":"M. Abouheaf, F. Lewis","doi":"10.1109/CDC.2013.6760804","DOIUrl":null,"url":null,"abstract":"This paper studies a class of multi-agent graphical games denoted by differential graphical games, where interactions between agents are prescribed by a communication graph structure. Ideas from cooperative control are given to achieve synchronization among the agents to a leader dynamics. New coupled Bellman and Hamilton-Jacobi-Bellman equations are developed for this class of games using Integral Reinforcement Learning. Nash solutions are given in terms of solutions to a set of coupled continuous-time Hamilton-Jacobi-Bellman equations. A multi-agent policy iteration algorithm is given to learn the Nash solution in real time without knowing the complete dynamic models of the agents. A proof of convergence for this algorithm is given. An online multi-agent method based on policy iterations is developed using a critic network to solve all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Multi-agent differential graphical games: Nash online adaptive learning solutions\",\"authors\":\"M. Abouheaf, F. Lewis\",\"doi\":\"10.1109/CDC.2013.6760804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a class of multi-agent graphical games denoted by differential graphical games, where interactions between agents are prescribed by a communication graph structure. Ideas from cooperative control are given to achieve synchronization among the agents to a leader dynamics. New coupled Bellman and Hamilton-Jacobi-Bellman equations are developed for this class of games using Integral Reinforcement Learning. Nash solutions are given in terms of solutions to a set of coupled continuous-time Hamilton-Jacobi-Bellman equations. A multi-agent policy iteration algorithm is given to learn the Nash solution in real time without knowing the complete dynamic models of the agents. A proof of convergence for this algorithm is given. An online multi-agent method based on policy iterations is developed using a critic network to solve all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文研究了一类多智能体图形对策,用微分图形对策来表示,其中智能体之间的相互作用用通信图结构来规定。给出了协作控制的思想,以实现agent之间对leader动态的同步。针对这类对策,利用积分强化学习建立了新的耦合Bellman方程和Hamilton-Jacobi-Bellman方程。Nash解是用一组连续耦合Hamilton-Jacobi-Bellman方程的解来表示的。提出了一种多智能体策略迭代算法,在不知道智能体完整动态模型的情况下实时学习纳什解。给出了该算法的收敛性证明。提出了一种基于策略迭代的在线多智能体方法,利用批评家网络同时求解图形博弈的所有Hamilton-Jacobi-Bellman方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-agent differential graphical games: Nash online adaptive learning solutions
This paper studies a class of multi-agent graphical games denoted by differential graphical games, where interactions between agents are prescribed by a communication graph structure. Ideas from cooperative control are given to achieve synchronization among the agents to a leader dynamics. New coupled Bellman and Hamilton-Jacobi-Bellman equations are developed for this class of games using Integral Reinforcement Learning. Nash solutions are given in terms of solutions to a set of coupled continuous-time Hamilton-Jacobi-Bellman equations. A multi-agent policy iteration algorithm is given to learn the Nash solution in real time without knowing the complete dynamic models of the agents. A proof of convergence for this algorithm is given. An online multi-agent method based on policy iterations is developed using a critic network to solve all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1