{"title":"硫回收装置软测量设计中回归量选择方法的比较","authors":"L. Fortuna, S. Graziani, M. Xibilia, G. Napoli","doi":"10.1109/MED.2006.328855","DOIUrl":null,"url":null,"abstract":"The paper proposes a comparison of different strategies of regressors selection for the design of a soft sensor for a sulfur recovery unit of a refinery. The soft sensor is designed to replace the on line analyzer during maintenance and it is designed by using nonlinear MA models implemented by a MLP neural network. A number of strategies for the automatic choice of influent input variables and regressors selection, on the basis of available experimental data, are compared with a strategy based on a trial and error approach, guided by the knowledge of the experts, both in terms of their performance and their computational complexity","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comparing regressors selection methods for the Soft Sensor design of a Sulfur Recovery Unit\",\"authors\":\"L. Fortuna, S. Graziani, M. Xibilia, G. Napoli\",\"doi\":\"10.1109/MED.2006.328855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a comparison of different strategies of regressors selection for the design of a soft sensor for a sulfur recovery unit of a refinery. The soft sensor is designed to replace the on line analyzer during maintenance and it is designed by using nonlinear MA models implemented by a MLP neural network. A number of strategies for the automatic choice of influent input variables and regressors selection, on the basis of available experimental data, are compared with a strategy based on a trial and error approach, guided by the knowledge of the experts, both in terms of their performance and their computational complexity\",\"PeriodicalId\":347035,\"journal\":{\"name\":\"2006 14th Mediterranean Conference on Control and Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2006.328855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing regressors selection methods for the Soft Sensor design of a Sulfur Recovery Unit
The paper proposes a comparison of different strategies of regressors selection for the design of a soft sensor for a sulfur recovery unit of a refinery. The soft sensor is designed to replace the on line analyzer during maintenance and it is designed by using nonlinear MA models implemented by a MLP neural network. A number of strategies for the automatic choice of influent input variables and regressors selection, on the basis of available experimental data, are compared with a strategy based on a trial and error approach, guided by the knowledge of the experts, both in terms of their performance and their computational complexity