{"title":"定子铁氧体永磁单相双凸极小型电机设计:有限元分析与控制动力学","authors":"A. S. Icfanuti, L. Tutelea, F. Kalluf, I. Boldea","doi":"10.1109/OPTIM.2014.6850893","DOIUrl":null,"url":null,"abstract":"The present paper introduces a novel two coil 1 phase stator Ferrite PM motor [1]. The main targets are reduced material and fabrication costs in a robust topology at 90% efficiency for a 35W, 1600 rpm case study. Due to complicated flux lines (with tapered airgap for self-starting) and magnetic saturation, direct FEM characterization (preliminary design) was applied. Matlab Simulink modeling for controlled dynamics which made use FEM imposed cogging torque, emf and inductance with rotor position waveforms proved smooth motor starting to rated speed for speed performance, full load in both open loop (V/f) and close loop control.","PeriodicalId":298237,"journal":{"name":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel design of stator Ferrite PM single phase doubly salient small motor: FEM characterization and controlled dynamics\",\"authors\":\"A. S. Icfanuti, L. Tutelea, F. Kalluf, I. Boldea\",\"doi\":\"10.1109/OPTIM.2014.6850893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper introduces a novel two coil 1 phase stator Ferrite PM motor [1]. The main targets are reduced material and fabrication costs in a robust topology at 90% efficiency for a 35W, 1600 rpm case study. Due to complicated flux lines (with tapered airgap for self-starting) and magnetic saturation, direct FEM characterization (preliminary design) was applied. Matlab Simulink modeling for controlled dynamics which made use FEM imposed cogging torque, emf and inductance with rotor position waveforms proved smooth motor starting to rated speed for speed performance, full load in both open loop (V/f) and close loop control.\",\"PeriodicalId\":298237,\"journal\":{\"name\":\"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OPTIM.2014.6850893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM.2014.6850893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel design of stator Ferrite PM single phase doubly salient small motor: FEM characterization and controlled dynamics
The present paper introduces a novel two coil 1 phase stator Ferrite PM motor [1]. The main targets are reduced material and fabrication costs in a robust topology at 90% efficiency for a 35W, 1600 rpm case study. Due to complicated flux lines (with tapered airgap for self-starting) and magnetic saturation, direct FEM characterization (preliminary design) was applied. Matlab Simulink modeling for controlled dynamics which made use FEM imposed cogging torque, emf and inductance with rotor position waveforms proved smooth motor starting to rated speed for speed performance, full load in both open loop (V/f) and close loop control.