计算

J. Rau
{"title":"计算","authors":"J. Rau","doi":"10.1093/oso/9780192896308.003.0004","DOIUrl":null,"url":null,"abstract":"This chapter introduces the basic building blocks of quantum computing and a variety of specific algorithms. It begins with a brief review of classical computing and discusses how its key elements – bits, gates, circuits – carry over to the quantum realm. It highlights crucial differences to the classical case, such as the impossibility of copying a qubit. The quantum circuit model is shown to be universal, and a peculiar variant of quantum computing, based on measurements only, is illustrated. That a quantum computer can perform some calculations more efficiently than a classical computer, at least in principle, is exemplified with the Deutsch-Jozsa algorithm. Other examples covered in this chapter are the variational quantum eigensolver, which can be applied to the study of molecules and classical optimization problems; quantum simulation; and entanglement-assisted metrology.","PeriodicalId":445393,"journal":{"name":"Quantum Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation\",\"authors\":\"J. Rau\",\"doi\":\"10.1093/oso/9780192896308.003.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces the basic building blocks of quantum computing and a variety of specific algorithms. It begins with a brief review of classical computing and discusses how its key elements – bits, gates, circuits – carry over to the quantum realm. It highlights crucial differences to the classical case, such as the impossibility of copying a qubit. The quantum circuit model is shown to be universal, and a peculiar variant of quantum computing, based on measurements only, is illustrated. That a quantum computer can perform some calculations more efficiently than a classical computer, at least in principle, is exemplified with the Deutsch-Jozsa algorithm. Other examples covered in this chapter are the variational quantum eigensolver, which can be applied to the study of molecules and classical optimization problems; quantum simulation; and entanglement-assisted metrology.\",\"PeriodicalId\":445393,\"journal\":{\"name\":\"Quantum Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192896308.003.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192896308.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章介绍了量子计算的基本构建模块和各种具体算法。它首先简要回顾了经典计算,并讨论了它的关键元素——比特、门、电路——是如何延续到量子领域的。它突出了与经典情况的关键区别,比如不可能复制量子比特。量子电路模型被证明是通用的,量子计算的一个特殊变体,仅基于测量,被说明。至少在原则上,量子计算机可以比经典计算机更有效地执行某些计算,Deutsch-Jozsa算法就是一个例子。本章中涉及的其他例子有变分量子本征求解器,它可以应用于分子和经典优化问题的研究;量子模拟;以及纠缠辅助计量学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation
This chapter introduces the basic building blocks of quantum computing and a variety of specific algorithms. It begins with a brief review of classical computing and discusses how its key elements – bits, gates, circuits – carry over to the quantum realm. It highlights crucial differences to the classical case, such as the impossibility of copying a qubit. The quantum circuit model is shown to be universal, and a peculiar variant of quantum computing, based on measurements only, is illustrated. That a quantum computer can perform some calculations more efficiently than a classical computer, at least in principle, is exemplified with the Deutsch-Jozsa algorithm. Other examples covered in this chapter are the variational quantum eigensolver, which can be applied to the study of molecules and classical optimization problems; quantum simulation; and entanglement-assisted metrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reasoning About Measurements Computation Probability in Hilbert Space Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1