B. U. Demirel, Adnan Harun Dogan, M. A. Al Faruque
{"title":"两种可能:使用具有特定领域特征的深度学习对心脏异常进行逐拍分类","authors":"B. U. Demirel, Adnan Harun Dogan, M. A. Al Faruque","doi":"10.23919/cinc53138.2021.9662935","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient convolutional neural network to detect 26 different classes of cardiac activities from different numbers of leads in the Phys-ionetlComputing data in the Cardiology Challenge 2021. The proposed CNN architecture is designed to utilize heart rate variation features from ECG recordings and wave-form morphologies of heartbeats simultaneously. Also, the designed architecture is flexible for the implementation of a different number of leads with a varied length of ECG recordings. The proposed algorithm achieved a score of 0.38 using only 2 channels ofECG on all recordings for the hidden test set of the challenge, placing us 21, 20, 19, 20, 20th (Team name: METU-19) out of 39 teams for 12, 6, 4, 3, and 2-leads respectively. These results show the potential of an efficient, flexible novel neural network for beat-by-beat classification of raw ECG recordings to a complex multi-class multi-label classification problem.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two Might Do: A Beat-by-Beat Classification of Cardiac Abnormalities Using Deep Learning with Domain-Specific Features\",\"authors\":\"B. U. Demirel, Adnan Harun Dogan, M. A. Al Faruque\",\"doi\":\"10.23919/cinc53138.2021.9662935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient convolutional neural network to detect 26 different classes of cardiac activities from different numbers of leads in the Phys-ionetlComputing data in the Cardiology Challenge 2021. The proposed CNN architecture is designed to utilize heart rate variation features from ECG recordings and wave-form morphologies of heartbeats simultaneously. Also, the designed architecture is flexible for the implementation of a different number of leads with a varied length of ECG recordings. The proposed algorithm achieved a score of 0.38 using only 2 channels ofECG on all recordings for the hidden test set of the challenge, placing us 21, 20, 19, 20, 20th (Team name: METU-19) out of 39 teams for 12, 6, 4, 3, and 2-leads respectively. These results show the potential of an efficient, flexible novel neural network for beat-by-beat classification of raw ECG recordings to a complex multi-class multi-label classification problem.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two Might Do: A Beat-by-Beat Classification of Cardiac Abnormalities Using Deep Learning with Domain-Specific Features
This paper proposes an efficient convolutional neural network to detect 26 different classes of cardiac activities from different numbers of leads in the Phys-ionetlComputing data in the Cardiology Challenge 2021. The proposed CNN architecture is designed to utilize heart rate variation features from ECG recordings and wave-form morphologies of heartbeats simultaneously. Also, the designed architecture is flexible for the implementation of a different number of leads with a varied length of ECG recordings. The proposed algorithm achieved a score of 0.38 using only 2 channels ofECG on all recordings for the hidden test set of the challenge, placing us 21, 20, 19, 20, 20th (Team name: METU-19) out of 39 teams for 12, 6, 4, 3, and 2-leads respectively. These results show the potential of an efficient, flexible novel neural network for beat-by-beat classification of raw ECG recordings to a complex multi-class multi-label classification problem.