{"title":"基于高斯过程回归的主动学习策略在电子设备不确定性量化中的应用","authors":"R. Trinchero, F. Canavero","doi":"10.3390/iec2020-06967","DOIUrl":null,"url":null,"abstract":"This paper presents a preliminary version of an active learning (AL) scheme for the sample selection aimed at the development of a surrogate model for the uncertainty quantification based on the Gaussian process regression. The proposed AL strategy iteratively searches for new candidate points to be included within the training set by trying to minimize the relative posterior standard deviation provided by the Gaussian process regression surrogate. The above scheme has been applied for the construction of a surrogate model for the statistical analysis of the efficiency of a switching buck converter as a function of seven uncertain parameters. The performance of the surrogate model constructed via the proposed active learning method is compared with that provided by an equivalent model built via a Latin hypercube sampling. The results of a Monte Carlo simulation with the computational model are used as reference.","PeriodicalId":215878,"journal":{"name":"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of an Active Learning Strategy Based on Gaussian Process Regression for the Uncertainty Quantification of Electronic Devices\",\"authors\":\"R. Trinchero, F. Canavero\",\"doi\":\"10.3390/iec2020-06967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a preliminary version of an active learning (AL) scheme for the sample selection aimed at the development of a surrogate model for the uncertainty quantification based on the Gaussian process regression. The proposed AL strategy iteratively searches for new candidate points to be included within the training set by trying to minimize the relative posterior standard deviation provided by the Gaussian process regression surrogate. The above scheme has been applied for the construction of a surrogate model for the statistical analysis of the efficiency of a switching buck converter as a function of seven uncertain parameters. The performance of the surrogate model constructed via the proposed active learning method is compared with that provided by an equivalent model built via a Latin hypercube sampling. The results of a Monte Carlo simulation with the computational model are used as reference.\",\"PeriodicalId\":215878,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iec2020-06967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iec2020-06967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of an Active Learning Strategy Based on Gaussian Process Regression for the Uncertainty Quantification of Electronic Devices
This paper presents a preliminary version of an active learning (AL) scheme for the sample selection aimed at the development of a surrogate model for the uncertainty quantification based on the Gaussian process regression. The proposed AL strategy iteratively searches for new candidate points to be included within the training set by trying to minimize the relative posterior standard deviation provided by the Gaussian process regression surrogate. The above scheme has been applied for the construction of a surrogate model for the statistical analysis of the efficiency of a switching buck converter as a function of seven uncertain parameters. The performance of the surrogate model constructed via the proposed active learning method is compared with that provided by an equivalent model built via a Latin hypercube sampling. The results of a Monte Carlo simulation with the computational model are used as reference.