基于马尔可夫链的数字取证网络犯罪分析模型

Do Do Kim, H. In
{"title":"基于马尔可夫链的数字取证网络犯罪分析模型","authors":"Do Do Kim, H. In","doi":"10.1109/ISA.2008.90","DOIUrl":null,"url":null,"abstract":"Recognizing links between offender patterns is one of the most crucial skills of an investigator. Early recognition of similar patterns can lead to focusing resources, improving clearance rates, and ultimately saving lives in terms of digital forensics. In this paper we propose a forensics methodology using Markov chain during a given time interval for tracking and predicting the degree of criminal activity as it evolves over time. In other words, we describe intrusion scenario, and classify profiling of user's behavior by prior probability based Markov chain. Also, we apply the noise page elimination algorithm (NPEA) to reduce an error of probability prediction. Finally, we have experiment our model on dataset and have analysis their accuracy by Monte Carlo simulation.","PeriodicalId":212375,"journal":{"name":"2008 International Conference on Information Security and Assurance (isa 2008)","volume":"24 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cyber Criminal Activity Analysis Models using Markov Chain for Digital Forensics\",\"authors\":\"Do Do Kim, H. In\",\"doi\":\"10.1109/ISA.2008.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing links between offender patterns is one of the most crucial skills of an investigator. Early recognition of similar patterns can lead to focusing resources, improving clearance rates, and ultimately saving lives in terms of digital forensics. In this paper we propose a forensics methodology using Markov chain during a given time interval for tracking and predicting the degree of criminal activity as it evolves over time. In other words, we describe intrusion scenario, and classify profiling of user's behavior by prior probability based Markov chain. Also, we apply the noise page elimination algorithm (NPEA) to reduce an error of probability prediction. Finally, we have experiment our model on dataset and have analysis their accuracy by Monte Carlo simulation.\",\"PeriodicalId\":212375,\"journal\":{\"name\":\"2008 International Conference on Information Security and Assurance (isa 2008)\",\"volume\":\"24 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Information Security and Assurance (isa 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2008.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Security and Assurance (isa 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2008.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

识别罪犯模式之间的联系是调查人员最重要的技能之一。早期识别类似的模式可以集中资源,提高清除率,并最终在数字取证方面挽救生命。在本文中,我们提出了一种取证方法,使用马尔可夫链在给定的时间间隔内跟踪和预测犯罪活动的程度,因为它随着时间的推移而演变。换句话说,我们描述入侵场景,并根据基于先验概率的马尔可夫链对用户行为进行分类分析。此外,我们还应用了噪声页消除算法(NPEA)来减少概率预测的误差。最后,我们在数据集上进行了实验,并通过蒙特卡罗仿真分析了模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyber Criminal Activity Analysis Models using Markov Chain for Digital Forensics
Recognizing links between offender patterns is one of the most crucial skills of an investigator. Early recognition of similar patterns can lead to focusing resources, improving clearance rates, and ultimately saving lives in terms of digital forensics. In this paper we propose a forensics methodology using Markov chain during a given time interval for tracking and predicting the degree of criminal activity as it evolves over time. In other words, we describe intrusion scenario, and classify profiling of user's behavior by prior probability based Markov chain. Also, we apply the noise page elimination algorithm (NPEA) to reduce an error of probability prediction. Finally, we have experiment our model on dataset and have analysis their accuracy by Monte Carlo simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Electronic Communication Technology - VT Position Code Communication Technology and Its Implementation CRYPTEX Model for Software Source Code The Economics of Privacy-Privacy: People, Policy and Technology Why MSN Lost to QQ in China Market? Different Privacy Protection Design Maximizing Return on Security Safeguard Investment with Constraint Satisfaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1