开放式磁阱GDT等离子体注入电子束的计算特性

V. Astrelin, E. Soldatkina, P. Bagryansky, Dmitry Scovorodin
{"title":"开放式磁阱GDT等离子体注入电子束的计算特性","authors":"V. Astrelin, E. Soldatkina, P. Bagryansky, Dmitry Scovorodin","doi":"10.1109/EFRE47760.2020.9242080","DOIUrl":null,"url":null,"abstract":"In the Institute of Nuclear Physics, SB RAS, experiments are carried out on injection of electron beam into open magnetic trap GDT. The trap is a mirror cell with a large mirror ratio filled with deuterium plasma with subthermonuclear parameters. Two expanders are attached to both sides of the trap. There are volumes with a diverging magnetic field, used to reduce longitudinal losses from the trap. The source of the electron beam is located in the expander, in the region of a weak magnetic field and is exposed to a supersonic plasma ion stream emerging from the trap. The source of a diode-type operates with a thermionic cathode and a hollow metal anode. The plasma from the trap enters the diode through the anode liner and stops by the potential of the cathode, forming an anode electrode. Its surface and the metal surfaces of the electrodes determine the electron-optical characteristics of the diode and the beam formed in it. The paper presents the results of two-dimensional numerical simulation of the beam source and calculated electron beam angular characteristics. The numerical model uses the plasma flow parameters measured in the experiment and results of solving the one-dimensional Poisson equation for the Debye layer on the surface of the anode plasma.","PeriodicalId":190249,"journal":{"name":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation Characteristics of the Electron Beam Injected into the Plasma of the Open Magnetic Trap GDT\",\"authors\":\"V. Astrelin, E. Soldatkina, P. Bagryansky, Dmitry Scovorodin\",\"doi\":\"10.1109/EFRE47760.2020.9242080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Institute of Nuclear Physics, SB RAS, experiments are carried out on injection of electron beam into open magnetic trap GDT. The trap is a mirror cell with a large mirror ratio filled with deuterium plasma with subthermonuclear parameters. Two expanders are attached to both sides of the trap. There are volumes with a diverging magnetic field, used to reduce longitudinal losses from the trap. The source of the electron beam is located in the expander, in the region of a weak magnetic field and is exposed to a supersonic plasma ion stream emerging from the trap. The source of a diode-type operates with a thermionic cathode and a hollow metal anode. The plasma from the trap enters the diode through the anode liner and stops by the potential of the cathode, forming an anode electrode. Its surface and the metal surfaces of the electrodes determine the electron-optical characteristics of the diode and the beam formed in it. The paper presents the results of two-dimensional numerical simulation of the beam source and calculated electron beam angular characteristics. The numerical model uses the plasma flow parameters measured in the experiment and results of solving the one-dimensional Poisson equation for the Debye layer on the surface of the anode plasma.\",\"PeriodicalId\":190249,\"journal\":{\"name\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFRE47760.2020.9242080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFRE47760.2020.9242080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在SB - RAS核物理研究所进行了电子束注入开放式磁阱GDT的实验。陷阱是一个大镜像比的镜像细胞,充满了具有亚热核参数的氘等离子体。两个膨胀器连接在疏水阀的两侧。有分散磁场的体积,用于减少陷阱的纵向损失。电子束的来源位于膨胀器中,在弱磁场的区域,并暴露于从陷阱中出现的超音速等离子体离子流。二极管型的源与热离子阴极和空心金属阳极一起工作。来自陷阱的等离子体通过阳极衬里进入二极管,并在阴极的电位处停止,形成阳极电极。它的表面和电极的金属表面决定了二极管和其中形成的光束的电子光学特性。本文给出了电子束源的二维数值模拟结果和计算出的电子束角特性。数值模型采用实验测量的等离子体流动参数和阳极等离子体表面德拜层一维泊松方程的求解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation Characteristics of the Electron Beam Injected into the Plasma of the Open Magnetic Trap GDT
In the Institute of Nuclear Physics, SB RAS, experiments are carried out on injection of electron beam into open magnetic trap GDT. The trap is a mirror cell with a large mirror ratio filled with deuterium plasma with subthermonuclear parameters. Two expanders are attached to both sides of the trap. There are volumes with a diverging magnetic field, used to reduce longitudinal losses from the trap. The source of the electron beam is located in the expander, in the region of a weak magnetic field and is exposed to a supersonic plasma ion stream emerging from the trap. The source of a diode-type operates with a thermionic cathode and a hollow metal anode. The plasma from the trap enters the diode through the anode liner and stops by the potential of the cathode, forming an anode electrode. Its surface and the metal surfaces of the electrodes determine the electron-optical characteristics of the diode and the beam formed in it. The paper presents the results of two-dimensional numerical simulation of the beam source and calculated electron beam angular characteristics. The numerical model uses the plasma flow parameters measured in the experiment and results of solving the one-dimensional Poisson equation for the Debye layer on the surface of the anode plasma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Materials and Coatings for Nuclear Technology Higher Harmonics in the Output Spectrum of Microwave Sources Based on Nonlaminar Electron Beams (Analysis of the Effect of Transverse and Longitudinal Bunches of the Space Charge) Pulse Source of Electrons Based on the Pyroeffect Features of the Synthesis of TiCAl (Fe2O3/TiO2) Metal Matrix Composites under Nonequilibrium Conditions Volume Discharges in CO2-Laser Mixtures at Atmospheric Pressures With High Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1