基于鲁棒卡尔曼滤波的最近邻数据关联算法

Rongqing Su, Jun Tang, Jiangnan Yuan, Yuewen Bi
{"title":"基于鲁棒卡尔曼滤波的最近邻数据关联算法","authors":"Rongqing Su, Jun Tang, Jiangnan Yuan, Yuewen Bi","doi":"10.1109/ISCEIC53685.2021.00044","DOIUrl":null,"url":null,"abstract":"The radar data association algorithm is one of the most difficult problems in the field of target tracking. Among them, it is easy to cause bug tracking when using the nearest neighbor data association (NNDA) algorithm. Combined with robust Kalman filtering and nearest neighbor ideas, this paper proposes the robust nearest neighbor data association (RNNDA) algorithm. This paper introduces the process of RNNDA. The simulation results show that the target tracking accuracy of RNNDA is high than NNDA. Moreover, the times of target bug tracking are reduced significantly.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nearest Neighbor Data Association Algorithm Based on Robust Kalman Filtering\",\"authors\":\"Rongqing Su, Jun Tang, Jiangnan Yuan, Yuewen Bi\",\"doi\":\"10.1109/ISCEIC53685.2021.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radar data association algorithm is one of the most difficult problems in the field of target tracking. Among them, it is easy to cause bug tracking when using the nearest neighbor data association (NNDA) algorithm. Combined with robust Kalman filtering and nearest neighbor ideas, this paper proposes the robust nearest neighbor data association (RNNDA) algorithm. This paper introduces the process of RNNDA. The simulation results show that the target tracking accuracy of RNNDA is high than NNDA. Moreover, the times of target bug tracking are reduced significantly.\",\"PeriodicalId\":342968,\"journal\":{\"name\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCEIC53685.2021.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

雷达数据关联算法是目标跟踪领域的难点问题之一。其中,使用最近邻数据关联(NNDA)算法时容易引起bug跟踪。结合鲁棒卡尔曼滤波和最近邻思想,提出了鲁棒最近邻数据关联(RNNDA)算法。本文介绍了RNNDA的过程。仿真结果表明,RNNDA比NNDA具有更高的目标跟踪精度。此外,显著减少了目标bug跟踪的次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nearest Neighbor Data Association Algorithm Based on Robust Kalman Filtering
The radar data association algorithm is one of the most difficult problems in the field of target tracking. Among them, it is easy to cause bug tracking when using the nearest neighbor data association (NNDA) algorithm. Combined with robust Kalman filtering and nearest neighbor ideas, this paper proposes the robust nearest neighbor data association (RNNDA) algorithm. This paper introduces the process of RNNDA. The simulation results show that the target tracking accuracy of RNNDA is high than NNDA. Moreover, the times of target bug tracking are reduced significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Mechanical Zero Position Capture and Transfer of Steering Gear Based on Machine Vision Adaptive image watermarking algorithm based on visual characteristics Gaussian Image Denoising Method Based on the Dual Channel Deep Neural Network with the Skip Connection Design and Realization of Drum Level Control System for 300MW Unit New energy charging pile planning in residential area based on improved genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1