{"title":"欧几里得群的数值优化及其在相机标定中的应用","authors":"Seung-Hyeon Gwak, Junggon Kim, F. Park","doi":"10.1109/TRA.2002.807530","DOIUrl":null,"url":null,"abstract":"We present the cyclic coordinate descent (CCD) algorithm for optimizing quadratic objective functions on SE(3), and apply it to a class of robot sensor calibration problems. Exploiting the fact that SE(3) is the semidirect product of SO(3) and /spl Rfr//sup 3/, we show that by cyclically optimizing between these two spaces, global convergence can be assured under a mild set of assumptions. The CCD algorithm is also invariant with respect to choice of fixed reference frame (i.e., left invariant, as required by the principle of objectivity). Examples from camera calibration confirm the simplicity, efficiency, and robustness of the CCD algorithm on SE(3), and its wide applicability to problems of practical interest in robotics.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Numerical optimization on the Euclidean group with applications to camera calibration\",\"authors\":\"Seung-Hyeon Gwak, Junggon Kim, F. Park\",\"doi\":\"10.1109/TRA.2002.807530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the cyclic coordinate descent (CCD) algorithm for optimizing quadratic objective functions on SE(3), and apply it to a class of robot sensor calibration problems. Exploiting the fact that SE(3) is the semidirect product of SO(3) and /spl Rfr//sup 3/, we show that by cyclically optimizing between these two spaces, global convergence can be assured under a mild set of assumptions. The CCD algorithm is also invariant with respect to choice of fixed reference frame (i.e., left invariant, as required by the principle of objectivity). Examples from camera calibration confirm the simplicity, efficiency, and robustness of the CCD algorithm on SE(3), and its wide applicability to problems of practical interest in robotics.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2002.807530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2002.807530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical optimization on the Euclidean group with applications to camera calibration
We present the cyclic coordinate descent (CCD) algorithm for optimizing quadratic objective functions on SE(3), and apply it to a class of robot sensor calibration problems. Exploiting the fact that SE(3) is the semidirect product of SO(3) and /spl Rfr//sup 3/, we show that by cyclically optimizing between these two spaces, global convergence can be assured under a mild set of assumptions. The CCD algorithm is also invariant with respect to choice of fixed reference frame (i.e., left invariant, as required by the principle of objectivity). Examples from camera calibration confirm the simplicity, efficiency, and robustness of the CCD algorithm on SE(3), and its wide applicability to problems of practical interest in robotics.