用趋势分析法预测事故高风险时间点的尝试——行为测度变化显著趋势的检测方法

A. Murata
{"title":"用趋势分析法预测事故高风险时间点的尝试——行为测度变化显著趋势的检测方法","authors":"A. Murata","doi":"10.54941/ahfe100153","DOIUrl":null,"url":null,"abstract":"From the practical viewpoint, only behavioral measures (in this study, eight behavioral measures) were used for drowsiness prediction. A variety of baseline of drowsiness (arousal state) was used in this study. More concretely, each behavioral measure was used as the base line of drowsiness (arousal state) as well as the self-reported evaluation of drowsiness, and thus we made an attempt to predict the participant’s drowsiness for each base line. Trend analysis of each evaluation measure was carried out by using a single regression model where time and base line of drowsiness (one of evaluation measures) corresponded to an independent variable and a dependent variable, respectively. Using the result of trend analysis, we proposed a new approach to predict the point in time (we call this the point in time of virtual accident) when the participant would have encountered a crucial accident if he was driving a car. On the basis of results of all participants, the proposed approach could identify the point in time of virtual accident, and was promising for identifying and predicting the time zone with potentially high risk (probability) of inducing an accident due to drowsy driving in advance, and for warning drivers of such a state.","PeriodicalId":259265,"journal":{"name":"AHFE International","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Attempt to Predict Point in Time with High Risk of Accident by Trend Analysis-Method for Detecting Significant Trend of Change of Behavioral Measures-\",\"authors\":\"A. Murata\",\"doi\":\"10.54941/ahfe100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the practical viewpoint, only behavioral measures (in this study, eight behavioral measures) were used for drowsiness prediction. A variety of baseline of drowsiness (arousal state) was used in this study. More concretely, each behavioral measure was used as the base line of drowsiness (arousal state) as well as the self-reported evaluation of drowsiness, and thus we made an attempt to predict the participant’s drowsiness for each base line. Trend analysis of each evaluation measure was carried out by using a single regression model where time and base line of drowsiness (one of evaluation measures) corresponded to an independent variable and a dependent variable, respectively. Using the result of trend analysis, we proposed a new approach to predict the point in time (we call this the point in time of virtual accident) when the participant would have encountered a crucial accident if he was driving a car. On the basis of results of all participants, the proposed approach could identify the point in time of virtual accident, and was promising for identifying and predicting the time zone with potentially high risk (probability) of inducing an accident due to drowsy driving in advance, and for warning drivers of such a state.\",\"PeriodicalId\":259265,\"journal\":{\"name\":\"AHFE International\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AHFE International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe100153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AHFE International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe100153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从实际的角度来看,只有行为测量(在本研究中,有八种行为测量)被用于嗜睡预测。本研究采用了多种睡意基线(觉醒状态)。更具体地说,每个行为测量都被用作困倦(觉醒状态)的基线以及自我报告的困倦评估,因此我们试图预测每个基线的参与者的困倦程度。采用单一回归模型对各评价指标进行趋势分析,其中睡意时间和基线(评价指标之一)分别对应自变量和因变量。利用趋势分析的结果,我们提出了一种新的方法来预测时间点(我们称之为虚拟事故的时间点),当参与者驾驶汽车时,他会遇到重大事故。基于所有参与者的结果,所提出的方法可以识别虚拟事故发生的时间点,并有望提前识别和预测由于疲劳驾驶而发生事故的潜在高风险(概率)时区,并警告驾驶员这种状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Attempt to Predict Point in Time with High Risk of Accident by Trend Analysis-Method for Detecting Significant Trend of Change of Behavioral Measures-
From the practical viewpoint, only behavioral measures (in this study, eight behavioral measures) were used for drowsiness prediction. A variety of baseline of drowsiness (arousal state) was used in this study. More concretely, each behavioral measure was used as the base line of drowsiness (arousal state) as well as the self-reported evaluation of drowsiness, and thus we made an attempt to predict the participant’s drowsiness for each base line. Trend analysis of each evaluation measure was carried out by using a single regression model where time and base line of drowsiness (one of evaluation measures) corresponded to an independent variable and a dependent variable, respectively. Using the result of trend analysis, we proposed a new approach to predict the point in time (we call this the point in time of virtual accident) when the participant would have encountered a crucial accident if he was driving a car. On the basis of results of all participants, the proposed approach could identify the point in time of virtual accident, and was promising for identifying and predicting the time zone with potentially high risk (probability) of inducing an accident due to drowsy driving in advance, and for warning drivers of such a state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revitalizing The National Folk Play: The Tiger Hunting Folk Play Promoting Occupational Safety, Health, and Well-Being in SME Manufacturing Companies A Multi-Criteria and Multi-Actor Perspective for the Evaluation of Sustainability Services Open Innovation and Prospective Ergonomics for Smart Clothes Time Study and Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1