Ahmed S. I. Amar, Nasser Ojaroudi, Mohammad Alibakhshikenari, H. El-Hennawy, M. Darwish
{"title":"宽带5G蜂窝网络宽扫描相控阵天线设计","authors":"Ahmed S. I. Amar, Nasser Ojaroudi, Mohammad Alibakhshikenari, H. El-Hennawy, M. Darwish","doi":"10.1109/IMAS55807.2023.10066922","DOIUrl":null,"url":null,"abstract":"A wide-scan broadband phased array with highly-miniaturized resonators is studied in this paper for 5G cellular networks. Simple and straightforward design procedures are followed. Eight modified dipole antenna resonators have been arranged linearly across the top of the smartphone substrate, which is made of RT5880. The suggested array design is exhibiting a broad impedance bandwidth from 25 to 36 GHz (more than 10 GHz) supporting several candidate bands of 5G spectrum such as 26, 28, 32, and 36 GHz. In addition to its wide operation band and high efficiency, the introduced array offers several promising features such as highly miniaturized profile, well-defined end-fire radiation, wide beam steering capability, as well as sufficient efficiency and gain levels.","PeriodicalId":246624,"journal":{"name":"2023 International Microwave and Antenna Symposium (IMAS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wide-Scan Phased Array Antenna Design for Broadband 5G Cellular Networks\",\"authors\":\"Ahmed S. I. Amar, Nasser Ojaroudi, Mohammad Alibakhshikenari, H. El-Hennawy, M. Darwish\",\"doi\":\"10.1109/IMAS55807.2023.10066922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide-scan broadband phased array with highly-miniaturized resonators is studied in this paper for 5G cellular networks. Simple and straightforward design procedures are followed. Eight modified dipole antenna resonators have been arranged linearly across the top of the smartphone substrate, which is made of RT5880. The suggested array design is exhibiting a broad impedance bandwidth from 25 to 36 GHz (more than 10 GHz) supporting several candidate bands of 5G spectrum such as 26, 28, 32, and 36 GHz. In addition to its wide operation band and high efficiency, the introduced array offers several promising features such as highly miniaturized profile, well-defined end-fire radiation, wide beam steering capability, as well as sufficient efficiency and gain levels.\",\"PeriodicalId\":246624,\"journal\":{\"name\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAS55807.2023.10066922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Microwave and Antenna Symposium (IMAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAS55807.2023.10066922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wide-Scan Phased Array Antenna Design for Broadband 5G Cellular Networks
A wide-scan broadband phased array with highly-miniaturized resonators is studied in this paper for 5G cellular networks. Simple and straightforward design procedures are followed. Eight modified dipole antenna resonators have been arranged linearly across the top of the smartphone substrate, which is made of RT5880. The suggested array design is exhibiting a broad impedance bandwidth from 25 to 36 GHz (more than 10 GHz) supporting several candidate bands of 5G spectrum such as 26, 28, 32, and 36 GHz. In addition to its wide operation band and high efficiency, the introduced array offers several promising features such as highly miniaturized profile, well-defined end-fire radiation, wide beam steering capability, as well as sufficient efficiency and gain levels.