基于聚类的故障定位缺陷隔离实证研究

Yanqin Huang, Junhua Wu, Yang Feng, Zhenyu Chen, Zhihong Zhao
{"title":"基于聚类的故障定位缺陷隔离实证研究","authors":"Yanqin Huang, Junhua Wu, Yang Feng, Zhenyu Chen, Zhihong Zhao","doi":"10.1109/ISSREW.2013.6688893","DOIUrl":null,"url":null,"abstract":"Spectrum-based Fault Localization (SBFL) techniques use risk evaluation formulas to calculate each statement's likelihood of having a bug based on test results. SBFL can not only be used in statement level, but also can be used with other program entities such as branches, functions and so on. Most previous studies have been conducted under the assumption of a single bug. However, software always contains multi-bugs in practice. A natural idea of debugging is to isolate bugs and then use SBFL techniques to locate one bug for each group. In this paper, we conduct an empirical study on clustering for isolating bugs in fault localization. We analyze the effects of six fault localization techniques and two cluster algorithms. The main observations are: (1) ER5 (Wong1) achieves the best results of fault localization with clustering; (2) K-means outperforms hierarchical clustering for isolating bugs in fault localization.","PeriodicalId":332420,"journal":{"name":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An empirical study on clustering for isolating bugs in fault localization\",\"authors\":\"Yanqin Huang, Junhua Wu, Yang Feng, Zhenyu Chen, Zhihong Zhao\",\"doi\":\"10.1109/ISSREW.2013.6688893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum-based Fault Localization (SBFL) techniques use risk evaluation formulas to calculate each statement's likelihood of having a bug based on test results. SBFL can not only be used in statement level, but also can be used with other program entities such as branches, functions and so on. Most previous studies have been conducted under the assumption of a single bug. However, software always contains multi-bugs in practice. A natural idea of debugging is to isolate bugs and then use SBFL techniques to locate one bug for each group. In this paper, we conduct an empirical study on clustering for isolating bugs in fault localization. We analyze the effects of six fault localization techniques and two cluster algorithms. The main observations are: (1) ER5 (Wong1) achieves the best results of fault localization with clustering; (2) K-means outperforms hierarchical clustering for isolating bugs in fault localization.\",\"PeriodicalId\":332420,\"journal\":{\"name\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2013.6688893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2013.6688893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

基于谱的故障定位(SBFL)技术使用风险评估公式根据测试结果计算每个语句存在错误的可能性。SBFL不仅可以在语句级使用,还可以与分支、函数等其他程序实体一起使用。以前的大多数研究都是在假设一个bug的情况下进行的。然而,在实际应用中,软件总是包含多种bug。调试的一个自然思路是隔离bug,然后使用sffl技术为每个组定位一个bug。本文对聚类方法在故障定位中隔离故障进行了实证研究。我们分析了六种故障定位技术和两种聚类算法的效果。主要观察结果如下:(1)ER5 (Wong1)聚类方法在故障定位方面效果最好;(2)在故障定位中,K-means在隔离错误方面优于分层聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical study on clustering for isolating bugs in fault localization
Spectrum-based Fault Localization (SBFL) techniques use risk evaluation formulas to calculate each statement's likelihood of having a bug based on test results. SBFL can not only be used in statement level, but also can be used with other program entities such as branches, functions and so on. Most previous studies have been conducted under the assumption of a single bug. However, software always contains multi-bugs in practice. A natural idea of debugging is to isolate bugs and then use SBFL techniques to locate one bug for each group. In this paper, we conduct an empirical study on clustering for isolating bugs in fault localization. We analyze the effects of six fault localization techniques and two cluster algorithms. The main observations are: (1) ER5 (Wong1) achieves the best results of fault localization with clustering; (2) K-means outperforms hierarchical clustering for isolating bugs in fault localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bug localisation through diverse sources of information A chain of accountabilities in open systems based on assured entrustments Estimating response time distribution of server application in software aging phenomenon Safety assessment of software-intensive medical devices: Introducing a safety quality model approach Detection of missing requirements using base requirements pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1