通过横杆结构自适应优化实现基于reram的高效神经网络计算

Chenchen Liu, Fuxun Yu, Zhuwei Qin, Xiang Chen
{"title":"通过横杆结构自适应优化实现基于reram的高效神经网络计算","authors":"Chenchen Liu, Fuxun Yu, Zhuwei Qin, Xiang Chen","doi":"10.1145/3370748.3406581","DOIUrl":null,"url":null,"abstract":"Resistive random-access memory (ReRAM) based accelerators have been widely studied to achieve efficient neural network computing in speed and energy. Neural network optimization algorithms such as sparsity are developed to achieve efficient neural network computing on traditional computer architectures such as CPU and GPU. However, such computing efficiency improvement is hindered when deploying these algorithms on the ReRAM-based accelerator because of its unique crossbar-structural computations. And a specific algorithm and hardware co-optimization for the ReRAM-based architecture is still in a lack. In this work, we propose an efficient neural network computing framework that is specialized for the crossbar-structural computations on the ReRAM-based accelerators. The proposed framework includes a crossbar specific feature map pruning and an adaptive neural network deployment. Experimental results show our design can improve the computing accuracy by 9.1% compared with the state-of-the-art sparse neural networks. Based on a famous ReRAM-based DNN accelerator, the proposed framework demonstrates up to 1.4× speedup, 4.3× power efficiency, and 4.4× area saving.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enabling efficient ReRAM-based neural network computing via crossbar structure adaptive optimization\",\"authors\":\"Chenchen Liu, Fuxun Yu, Zhuwei Qin, Xiang Chen\",\"doi\":\"10.1145/3370748.3406581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistive random-access memory (ReRAM) based accelerators have been widely studied to achieve efficient neural network computing in speed and energy. Neural network optimization algorithms such as sparsity are developed to achieve efficient neural network computing on traditional computer architectures such as CPU and GPU. However, such computing efficiency improvement is hindered when deploying these algorithms on the ReRAM-based accelerator because of its unique crossbar-structural computations. And a specific algorithm and hardware co-optimization for the ReRAM-based architecture is still in a lack. In this work, we propose an efficient neural network computing framework that is specialized for the crossbar-structural computations on the ReRAM-based accelerators. The proposed framework includes a crossbar specific feature map pruning and an adaptive neural network deployment. Experimental results show our design can improve the computing accuracy by 9.1% compared with the state-of-the-art sparse neural networks. Based on a famous ReRAM-based DNN accelerator, the proposed framework demonstrates up to 1.4× speedup, 4.3× power efficiency, and 4.4× area saving.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了在速度和能量上实现高效的神经网络计算,基于电阻随机存取存储器(ReRAM)的加速器得到了广泛的研究。为了在CPU、GPU等传统计算机架构上实现高效的神经网络计算,开发了稀疏性等神经网络优化算法。然而,在基于reram的加速器上部署这些算法时,由于其独特的横杆结构计算,这种计算效率的提高受到阻碍。而对于基于rerram的架构,具体的算法和硬件协同优化仍然缺乏。在这项工作中,我们提出了一个高效的神经网络计算框架,专门用于基于reram的加速器的交叉杆结构计算。所提出的框架包括一个跨栏特定的特征映射修剪和一个自适应神经网络部署。实验结果表明,与目前最先进的稀疏神经网络相比,我们的设计可以提高9.1%的计算精度。基于著名的基于reram的深度神经网络加速器,该框架具有高达1.4倍的加速,4.3倍的功率效率和4.4倍的面积节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling efficient ReRAM-based neural network computing via crossbar structure adaptive optimization
Resistive random-access memory (ReRAM) based accelerators have been widely studied to achieve efficient neural network computing in speed and energy. Neural network optimization algorithms such as sparsity are developed to achieve efficient neural network computing on traditional computer architectures such as CPU and GPU. However, such computing efficiency improvement is hindered when deploying these algorithms on the ReRAM-based accelerator because of its unique crossbar-structural computations. And a specific algorithm and hardware co-optimization for the ReRAM-based architecture is still in a lack. In this work, we propose an efficient neural network computing framework that is specialized for the crossbar-structural computations on the ReRAM-based accelerators. The proposed framework includes a crossbar specific feature map pruning and an adaptive neural network deployment. Experimental results show our design can improve the computing accuracy by 9.1% compared with the state-of-the-art sparse neural networks. Based on a famous ReRAM-based DNN accelerator, the proposed framework demonstrates up to 1.4× speedup, 4.3× power efficiency, and 4.4× area saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1