基于核的在线学习运动目标分类的比较研究

Xin Zhao, Kaiqi Huang, T. Tan
{"title":"基于核的在线学习运动目标分类的比较研究","authors":"Xin Zhao, Kaiqi Huang, T. Tan","doi":"10.1109/IVSURV.2011.6157014","DOIUrl":null,"url":null,"abstract":"Most visual surveillance and video understanding systems require knowledge of categories of objects in the scene. One of the key challenges is to be able to classify any object in a real-time procedure in spite of changes in the scene over time and the varying appearance or shape of object. In this paper, we explore the applications of kernel based online learning methods in dealing with the above problems. We evaluate the performance of recently developed kernel based online algorithms combined with the state-of-the-art local shape feature descriptor. We perform the experimental evaluation on our dataset. The experimental results demonstrate that the online algorithms can be highly accurate to the problem of moving object classification.","PeriodicalId":141829,"journal":{"name":"2011 Third Chinese Conference on Intelligent Visual Surveillance","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison study on kernel based online learning for moving object classification\",\"authors\":\"Xin Zhao, Kaiqi Huang, T. Tan\",\"doi\":\"10.1109/IVSURV.2011.6157014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most visual surveillance and video understanding systems require knowledge of categories of objects in the scene. One of the key challenges is to be able to classify any object in a real-time procedure in spite of changes in the scene over time and the varying appearance or shape of object. In this paper, we explore the applications of kernel based online learning methods in dealing with the above problems. We evaluate the performance of recently developed kernel based online algorithms combined with the state-of-the-art local shape feature descriptor. We perform the experimental evaluation on our dataset. The experimental results demonstrate that the online algorithms can be highly accurate to the problem of moving object classification.\",\"PeriodicalId\":141829,\"journal\":{\"name\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third Chinese Conference on Intelligent Visual Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSURV.2011.6157014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third Chinese Conference on Intelligent Visual Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSURV.2011.6157014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数视觉监控和视频理解系统需要了解场景中物体的类别。关键的挑战之一是能够在实时过程中对任何物体进行分类,尽管场景随着时间的推移而变化,物体的外观或形状也在变化。在本文中,我们探索了基于核的在线学习方法在处理上述问题中的应用。我们评估了最近开发的基于核的在线算法与最先进的局部形状特征描述符相结合的性能。我们对我们的数据集进行了实验评估。实验结果表明,该算法对运动目标分类具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison study on kernel based online learning for moving object classification
Most visual surveillance and video understanding systems require knowledge of categories of objects in the scene. One of the key challenges is to be able to classify any object in a real-time procedure in spite of changes in the scene over time and the varying appearance or shape of object. In this paper, we explore the applications of kernel based online learning methods in dealing with the above problems. We evaluate the performance of recently developed kernel based online algorithms combined with the state-of-the-art local shape feature descriptor. We perform the experimental evaluation on our dataset. The experimental results demonstrate that the online algorithms can be highly accurate to the problem of moving object classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DSP-based incremental histogram calculation and particle filter tracking algorithm and its implementation People counting using combined feature A multi-faces tracking and recognition framework for surveillance system EK-means tracker: A pixel-wise tracking algorithm using kinect Children tantrum behaviour analysis based on Kinect sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1