利用神经网络进行短期每小时用气量预测

D. Peharda, M. Delimar, S. Lončarić
{"title":"利用神经网络进行短期每小时用气量预测","authors":"D. Peharda, M. Delimar, S. Lončarić","doi":"10.1109/ITI.2001.938043","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network based model for forecasting gas consumption for residential and commercial consumers. A feedforward neural network with sigmoid nodes and one hidden layer was trained by backpropagation. The model was validated on real data from a distribution area covering 7% of the total consumption in Croatia, consisting mostly of residential and commercial consumers.","PeriodicalId":375405,"journal":{"name":"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Short term hourly forecasting of gas consumption using neural networks\",\"authors\":\"D. Peharda, M. Delimar, S. Lončarić\",\"doi\":\"10.1109/ITI.2001.938043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network based model for forecasting gas consumption for residential and commercial consumers. A feedforward neural network with sigmoid nodes and one hidden layer was trained by backpropagation. The model was validated on real data from a distribution area covering 7% of the total consumption in Croatia, consisting mostly of residential and commercial consumers.\",\"PeriodicalId\":375405,\"journal\":{\"name\":\"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2001.938043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2001.938043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于神经网络的住宅和商业用气量预测模型。采用反向传播的方法训练了具有s形节点和一个隐层的前馈神经网络。该模型在覆盖克罗地亚总消费量7%的分布区域的真实数据上得到了验证,这些分布区域主要由住宅和商业消费者组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short term hourly forecasting of gas consumption using neural networks
This paper presents a neural network based model for forecasting gas consumption for residential and commercial consumers. A feedforward neural network with sigmoid nodes and one hidden layer was trained by backpropagation. The model was validated on real data from a distribution area covering 7% of the total consumption in Croatia, consisting mostly of residential and commercial consumers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representing time-dependent information in Multidimensional XML Supplement to development of priority rule model in production management information system Modelling continuing professional development in an innovative context Conceptual learning of cardiac anomalies and surgeries Variable selection in discriminant analysis in the presence of outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1