满意度搜索算法中的冲突分析

Joao Marques-Silva, K. Sakallah
{"title":"满意度搜索算法中的冲突分析","authors":"Joao Marques-Silva, K. Sakallah","doi":"10.1109/TAI.1996.560789","DOIUrl":null,"url":null,"abstract":"Introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for propositional satisfiability (SAT). GRASP incorporates several search-pruning techniques, some of which are specific to SAT, whereas others find equivalent in other fields of artificial intelligence. GRASP is premised on the inevitability of conflicts during a search, and its most distinguishing feature is the augmentation of the basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by \"recording\" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts allows GRASP to identify assignments that are necessary for a solution to be found. Experimental results obtained from a large number of benchmarks indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely effective for a large number of representative classes of SAT instances.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Conflict analysis in search algorithms for satisfiability\",\"authors\":\"Joao Marques-Silva, K. Sakallah\",\"doi\":\"10.1109/TAI.1996.560789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for propositional satisfiability (SAT). GRASP incorporates several search-pruning techniques, some of which are specific to SAT, whereas others find equivalent in other fields of artificial intelligence. GRASP is premised on the inevitability of conflicts during a search, and its most distinguishing feature is the augmentation of the basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by \\\"recording\\\" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts allows GRASP to identify assignments that are necessary for a solution to be found. Experimental results obtained from a large number of benchmarks indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely effective for a large number of representative classes of SAT instances.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

介绍了一种新的命题可满足性搜索算法GRASP (Generic seaRch Algorithm for Satisfiability Problem)。GRASP结合了几种搜索修剪技术,其中一些是SAT特有的,而另一些则在其他人工智能领域找到了等效的技术。GRASP以搜索过程中冲突的必然性为前提,其最大的特点是通过强大的冲突分析程序增强了基本的回溯搜索。分析冲突以确定其原因使GRASP能够非按时间顺序回溯到搜索树中的较早级别,这可能会修剪大部分搜索空间。此外,通过“记录”冲突的原因,GRASP可以在以后的搜索中识别和预防类似冲突的发生。最后,直接记录导致冲突的因果链,使GRASP能够确定找到解决方案所必需的分配。从大量基准测试中获得的实验结果表明,将所提出的冲突分析技术应用于SAT算法对于大量具有代表性的SAT实例类是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conflict analysis in search algorithms for satisfiability
Introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for propositional satisfiability (SAT). GRASP incorporates several search-pruning techniques, some of which are specific to SAT, whereas others find equivalent in other fields of artificial intelligence. GRASP is premised on the inevitability of conflicts during a search, and its most distinguishing feature is the augmentation of the basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by "recording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts allows GRASP to identify assignments that are necessary for a solution to be found. Experimental results obtained from a large number of benchmarks indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely effective for a large number of representative classes of SAT instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI tools in scheduling problem solving: a solver based on a "well-behaved" restriction of TCSPs A deliberative and reactive diagnosis agent based on logic programming Subdefinite models as a variety of constraint programming Oz Scheduler: a workbench for scheduling problems Automatic scale selection as a pre-processing stage to interpreting real-world data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1