使用潜在主题的跨语言关键词推荐

HetRec '10 Pub Date : 2010-09-26 DOI:10.1145/1869446.1869454
A. Takasu
{"title":"使用潜在主题的跨语言关键词推荐","authors":"A. Takasu","doi":"10.1145/1869446.1869454","DOIUrl":null,"url":null,"abstract":"Multi-lingual text processing is important for content-based and hybrid recommender systems. It helps recommender systems extract content information from broader sources. It also enables systems to recommend items in a user's native language. We propose a cross-lingual keyword recommendation method, which is built on an extended latent Dirichlet allocation model, for extracting latent features from parallel corpora. With this model, the proposed method can recommend keywords from text written in different languages. We evaluate the proposed method using a cross-lingual bibliographic database that contains both English and Japanese abstracts and keywords and show that the proposed method can recommend keywords from abstracts in a cross-lingual environment with almost the same accuracy as in a monolingual environment.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cross-lingual keyword recommendation using latent topics\",\"authors\":\"A. Takasu\",\"doi\":\"10.1145/1869446.1869454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-lingual text processing is important for content-based and hybrid recommender systems. It helps recommender systems extract content information from broader sources. It also enables systems to recommend items in a user's native language. We propose a cross-lingual keyword recommendation method, which is built on an extended latent Dirichlet allocation model, for extracting latent features from parallel corpora. With this model, the proposed method can recommend keywords from text written in different languages. We evaluate the proposed method using a cross-lingual bibliographic database that contains both English and Japanese abstracts and keywords and show that the proposed method can recommend keywords from abstracts in a cross-lingual environment with almost the same accuracy as in a monolingual environment.\",\"PeriodicalId\":258506,\"journal\":{\"name\":\"HetRec '10\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HetRec '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869446.1869454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多语言文本处理对于基于内容和混合推荐系统非常重要。它帮助推荐系统从更广泛的来源提取内容信息。它还使系统能够用用户的母语推荐商品。本文提出了一种基于扩展潜在Dirichlet分配模型的跨语言关键词推荐方法,用于从并行语料库中提取潜在特征。利用该模型,该方法可以从不同语言的文本中推荐关键词。我们使用包含英语和日语摘要和关键词的跨语言书目数据库对所提出的方法进行了评估,并表明所提出的方法可以在跨语言环境中从摘要中推荐关键词,并且准确度与单语言环境几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-lingual keyword recommendation using latent topics
Multi-lingual text processing is important for content-based and hybrid recommender systems. It helps recommender systems extract content information from broader sources. It also enables systems to recommend items in a user's native language. We propose a cross-lingual keyword recommendation method, which is built on an extended latent Dirichlet allocation model, for extracting latent features from parallel corpora. With this model, the proposed method can recommend keywords from text written in different languages. We evaluate the proposed method using a cross-lingual bibliographic database that contains both English and Japanese abstracts and keywords and show that the proposed method can recommend keywords from abstracts in a cross-lingual environment with almost the same accuracy as in a monolingual environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving the effectiveness of collaborative recommendation with ontology-based user profiles A user meta-model for context-aware recommender systems Cross-lingual keyword recommendation using latent topics Geographical recommender system based on interaction between map operation and category selection User data distributed on the social web: how to identify users on different social systems and collecting data about them
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1