MuHAVi:一个用于动作识别方法评价的多摄像头人体动作视频数据集

Sanchit Singh, S. Velastín, Hossein Ragheb
{"title":"MuHAVi:一个用于动作识别方法评价的多摄像头人体动作视频数据集","authors":"Sanchit Singh, S. Velastín, Hossein Ragheb","doi":"10.1109/AVSS.2010.63","DOIUrl":null,"url":null,"abstract":"This paper describes a body of multicamera humanaction video data with manually annotated silhouette datathat has been generated for the purpose of evaluatingsilhouette-based human action recognition methods. Itprovides a realistic challenge to both the segmentationand human action recognition communities and can act asa benchmark to objectively compare proposed algorithms.The public multi-camera, multi-action dataset is animprovement over existing datasets (e.g. PETS, CAVIAR,soccerdataset) that have not been developed specificallyfor human action recognition and complements otheraction recognition datasets (KTH, Weizmann, IXMAS,HumanEva, CMU Motion). It consists of 17 action classes,14 actors and 8 cameras. Each actor performs an actionseveral times in the action zone. The paper describes thedataset and illustrates a possible approach to algorithmevaluation using a previously published action simplerecognition method. In addition to showing an evaluationmethodology, these results establish a baseline for otherresearchers to improve upon.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":"{\"title\":\"MuHAVi: A Multicamera Human Action Video Dataset for the Evaluation of Action Recognition Methods\",\"authors\":\"Sanchit Singh, S. Velastín, Hossein Ragheb\",\"doi\":\"10.1109/AVSS.2010.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a body of multicamera humanaction video data with manually annotated silhouette datathat has been generated for the purpose of evaluatingsilhouette-based human action recognition methods. Itprovides a realistic challenge to both the segmentationand human action recognition communities and can act asa benchmark to objectively compare proposed algorithms.The public multi-camera, multi-action dataset is animprovement over existing datasets (e.g. PETS, CAVIAR,soccerdataset) that have not been developed specificallyfor human action recognition and complements otheraction recognition datasets (KTH, Weizmann, IXMAS,HumanEva, CMU Motion). It consists of 17 action classes,14 actors and 8 cameras. Each actor performs an actionseveral times in the action zone. The paper describes thedataset and illustrates a possible approach to algorithmevaluation using a previously published action simplerecognition method. In addition to showing an evaluationmethodology, these results establish a baseline for otherresearchers to improve upon.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"183\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

摘要

本文描述了一组带有手动注释轮廓数据的多摄像头人体动作视频数据,这些数据是为了评估基于轮廓的人体动作识别方法而生成的。它为分割和人类行为识别社区提供了一个现实的挑战,可以作为客观比较所提出算法的基准。公共多相机,多动作数据集是对现有数据集(例如pet, CAVIAR,soccerdataset)的改进,这些数据集尚未专门为人类动作识别开发,并补充了其他动作识别数据集(KTH, Weizmann, IXMAS,HumanEva, CMU Motion)。它由17个动作班、14名演员和8台摄像机组成。每个参与者在动作区域执行一个动作数次。本文描述了数据集,并说明了使用先前发布的动作简单识别方法进行算法评估的可能方法。除了展示评估方法之外,这些结果还为其他研究人员建立了一个改进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MuHAVi: A Multicamera Human Action Video Dataset for the Evaluation of Action Recognition Methods
This paper describes a body of multicamera humanaction video data with manually annotated silhouette datathat has been generated for the purpose of evaluatingsilhouette-based human action recognition methods. Itprovides a realistic challenge to both the segmentationand human action recognition communities and can act asa benchmark to objectively compare proposed algorithms.The public multi-camera, multi-action dataset is animprovement over existing datasets (e.g. PETS, CAVIAR,soccerdataset) that have not been developed specificallyfor human action recognition and complements otheraction recognition datasets (KTH, Weizmann, IXMAS,HumanEva, CMU Motion). It consists of 17 action classes,14 actors and 8 cameras. Each actor performs an actionseveral times in the action zone. The paper describes thedataset and illustrates a possible approach to algorithmevaluation using a previously published action simplerecognition method. In addition to showing an evaluationmethodology, these results establish a baseline for otherresearchers to improve upon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1