一种显著简化气举阀API流量测试的新方法

Felipe Simões Maciel, P. Waltrich
{"title":"一种显著简化气举阀API流量测试的新方法","authors":"Felipe Simões Maciel, P. Waltrich","doi":"10.2118/209754-ms","DOIUrl":null,"url":null,"abstract":"\n Accurate gas lift valve (GLV) performance is crucial for precise gas lift system design, but complex and time-consuming testing techniques are required to obtain valve performance correlations. Therefore, this paper presents a modeling approach that aims to reduce the testing effort and obtain the coefficients required for valve performance correlations. Specifically, the model replicates the flow capacity test (FCT) described in the API 11V2 (2001) and API 19G2 (2010) to determine the flow coefficient (Cv) and critical pressure ratio (Rcp) for gas lift valves (GLV). Technically, the FCT requires a modified GLV with an adjustable stem positioning system to obtain flow rate as a function of pressure drop and calculating Cv and Rcp for each stem travel. Among the drawbacks of the FCT are the valve modification itself and the large number of tests necessary. The proposed approach employs a 1D mechanistic model that considers equivalent diameters of the GLV orifice port and the check valve opening area to calculate the gas flow rate. The pressure drop across the restrictions is derived from Bernoulli's equation and used to calculate the flow rate, Cv and Rcp for several stem positions of the gas lift valve. Experimental data from a dynamic flow test (API 11V2) is used to calibrate the model. Simulation results of 12 different valves are compared to the Valve Performance Clearinghouse (VPC) database to validate the modeling approach. The VPC database was created based on GLV flow tests for valves from several manufacturers with different models and configurations. Results of flow capacity using the 1D mechanistic modeling show a consistent agreement with the VPC database. Overall, the error was always below 15% for both Cv and Rcp, which is a positive result considering that the current most accurate method shows errors of up to 25%. Even though the 1D modeling may be oversimplified given the consideration of 3D area changes as equivalent circular diameters, the method predicts Cv and Rcp with considerable accuracy. Moreover, the calibration using only one dynamic flow test result significantly reduces the time required to perform an FCT and eliminates the need to modify a GLV.","PeriodicalId":113398,"journal":{"name":"Day 2 Wed, August 24, 2022","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method to Significantly Simplify the API Flow Tests for Gas-Lift Valves\",\"authors\":\"Felipe Simões Maciel, P. Waltrich\",\"doi\":\"10.2118/209754-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate gas lift valve (GLV) performance is crucial for precise gas lift system design, but complex and time-consuming testing techniques are required to obtain valve performance correlations. Therefore, this paper presents a modeling approach that aims to reduce the testing effort and obtain the coefficients required for valve performance correlations. Specifically, the model replicates the flow capacity test (FCT) described in the API 11V2 (2001) and API 19G2 (2010) to determine the flow coefficient (Cv) and critical pressure ratio (Rcp) for gas lift valves (GLV). Technically, the FCT requires a modified GLV with an adjustable stem positioning system to obtain flow rate as a function of pressure drop and calculating Cv and Rcp for each stem travel. Among the drawbacks of the FCT are the valve modification itself and the large number of tests necessary. The proposed approach employs a 1D mechanistic model that considers equivalent diameters of the GLV orifice port and the check valve opening area to calculate the gas flow rate. The pressure drop across the restrictions is derived from Bernoulli's equation and used to calculate the flow rate, Cv and Rcp for several stem positions of the gas lift valve. Experimental data from a dynamic flow test (API 11V2) is used to calibrate the model. Simulation results of 12 different valves are compared to the Valve Performance Clearinghouse (VPC) database to validate the modeling approach. The VPC database was created based on GLV flow tests for valves from several manufacturers with different models and configurations. Results of flow capacity using the 1D mechanistic modeling show a consistent agreement with the VPC database. Overall, the error was always below 15% for both Cv and Rcp, which is a positive result considering that the current most accurate method shows errors of up to 25%. Even though the 1D modeling may be oversimplified given the consideration of 3D area changes as equivalent circular diameters, the method predicts Cv and Rcp with considerable accuracy. Moreover, the calibration using only one dynamic flow test result significantly reduces the time required to perform an FCT and eliminates the need to modify a GLV.\",\"PeriodicalId\":113398,\"journal\":{\"name\":\"Day 2 Wed, August 24, 2022\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, August 24, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209754-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, August 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209754-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确的气举阀(GLV)性能对于精确的气举系统设计至关重要,但需要复杂且耗时的测试技术来获得阀门性能相关性。因此,本文提出了一种建模方法,旨在减少测试工作量并获得阀门性能相关性所需的系数。具体来说,该模型复制了API 11V2(2001)和API 19G2(2010)中描述的流量测试(FCT),以确定气举阀(GLV)的流量系数(Cv)和临界压力比(Rcp)。从技术上讲,FCT需要一个带有可调节阀杆定位系统的改进GLV,以获得作为压降函数的流量,并计算每次阀杆行程的Cv和Rcp。FCT的缺点之一是阀门本身的修改和大量的测试是必要的。该方法采用一维力学模型,考虑GLV孔口等效直径和单向阀开度,计算气体流量。通过伯努利方程推导出限制范围内的压降,并用于计算气举阀几个阀杆位置的流量、Cv和Rcp。使用动态流量测试(API 11V2)的实验数据来校准模型。将12种不同阀门的仿真结果与Valve Performance Clearinghouse (VPC)数据库进行比较,验证了建模方法。VPC数据库是基于几个不同型号和配置的制造商的阀门的GLV流量测试而创建的。使用一维机制建模的流容量结果与VPC数据库一致。总体而言,Cv和Rcp的误差始终低于15%,考虑到目前最准确的方法显示的误差高达25%,这是一个积极的结果。尽管考虑到等效圆直径的三维面积变化,一维建模可能过于简化,但该方法预测Cv和Rcp具有相当的准确性。此外,仅使用一个动态流量测试结果进行校准,大大减少了执行FCT所需的时间,并且无需修改GLV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method to Significantly Simplify the API Flow Tests for Gas-Lift Valves
Accurate gas lift valve (GLV) performance is crucial for precise gas lift system design, but complex and time-consuming testing techniques are required to obtain valve performance correlations. Therefore, this paper presents a modeling approach that aims to reduce the testing effort and obtain the coefficients required for valve performance correlations. Specifically, the model replicates the flow capacity test (FCT) described in the API 11V2 (2001) and API 19G2 (2010) to determine the flow coefficient (Cv) and critical pressure ratio (Rcp) for gas lift valves (GLV). Technically, the FCT requires a modified GLV with an adjustable stem positioning system to obtain flow rate as a function of pressure drop and calculating Cv and Rcp for each stem travel. Among the drawbacks of the FCT are the valve modification itself and the large number of tests necessary. The proposed approach employs a 1D mechanistic model that considers equivalent diameters of the GLV orifice port and the check valve opening area to calculate the gas flow rate. The pressure drop across the restrictions is derived from Bernoulli's equation and used to calculate the flow rate, Cv and Rcp for several stem positions of the gas lift valve. Experimental data from a dynamic flow test (API 11V2) is used to calibrate the model. Simulation results of 12 different valves are compared to the Valve Performance Clearinghouse (VPC) database to validate the modeling approach. The VPC database was created based on GLV flow tests for valves from several manufacturers with different models and configurations. Results of flow capacity using the 1D mechanistic modeling show a consistent agreement with the VPC database. Overall, the error was always below 15% for both Cv and Rcp, which is a positive result considering that the current most accurate method shows errors of up to 25%. Even though the 1D modeling may be oversimplified given the consideration of 3D area changes as equivalent circular diameters, the method predicts Cv and Rcp with considerable accuracy. Moreover, the calibration using only one dynamic flow test result significantly reduces the time required to perform an FCT and eliminates the need to modify a GLV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accurate Gas-To-Pump Calculation in Pumping Oil Wells from Surface Data Using Combined Analytical Modeling of Gaseous Static Liquids Gradient: Part 1 Improve ESP Pump Sizing Through Enhanced Performance Prediction of ESP Stages in Two-Phase Flow Applications New Mechanism of Sand Management Above ESPs: Cases Study in Colombia Gas Lift Valve Bellow Protection from High Injection and Dome Pressure Closed Loop Gas-Lift Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1