利用神经网络(MLP)预测北嘉市太阳辐射。

Z. Asradj, R. Alkama
{"title":"利用神经网络(MLP)预测北嘉市太阳辐射。","authors":"Z. Asradj, R. Alkama","doi":"10.1109/CISTEM.2014.7077057","DOIUrl":null,"url":null,"abstract":"In order to model the global solar radiation based on meteorological parameters for the Bejaia site, we established a database of more than 26,000 points obtained by recording every eight minutes of illumination and meteorological parameters (sunshine hours, ambient temperature, air pressure, relative humidity and rainfall). empirical models have been developed using several parameters and, recently, prognostic and prediction models based on artificial intelligence techniques such as neural networks. The daily averages were used to test NN models with 5 parameters and the relationship with the coefficient of the highest correlation was chosen. Two thirds were used to establish the model and one third for validation. We compared its performance with four models in the literature (Angstrom-Prescott, Bahel, Newland and Abdalla).","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of solar radiation in Bejaia city using neurnal network (MLP).\",\"authors\":\"Z. Asradj, R. Alkama\",\"doi\":\"10.1109/CISTEM.2014.7077057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to model the global solar radiation based on meteorological parameters for the Bejaia site, we established a database of more than 26,000 points obtained by recording every eight minutes of illumination and meteorological parameters (sunshine hours, ambient temperature, air pressure, relative humidity and rainfall). empirical models have been developed using several parameters and, recently, prognostic and prediction models based on artificial intelligence techniques such as neural networks. The daily averages were used to test NN models with 5 parameters and the relationship with the coefficient of the highest correlation was chosen. Two thirds were used to establish the model and one third for validation. We compared its performance with four models in the literature (Angstrom-Prescott, Bahel, Newland and Abdalla).\",\"PeriodicalId\":115632,\"journal\":{\"name\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISTEM.2014.7077057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7077057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了建立基于气象参数的全球太阳辐射模型,我们建立了一个由26000多个点组成的数据库,这些点是通过记录每8分钟一次的照明和气象参数(日照时数、环境温度、气压、相对湿度和降雨量)获得的。已经开发了使用几个参数的经验模型,最近,基于人工智能技术(如神经网络)的预测和预测模型。利用日平均值对5个参数的神经网络模型进行检验,选取相关系数最高的关系。三分之二用于建立模型,三分之一用于验证。我们将其性能与文献中的四种模型(Angstrom-Prescott, Bahel, Newland和Abdalla)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of solar radiation in Bejaia city using neurnal network (MLP).
In order to model the global solar radiation based on meteorological parameters for the Bejaia site, we established a database of more than 26,000 points obtained by recording every eight minutes of illumination and meteorological parameters (sunshine hours, ambient temperature, air pressure, relative humidity and rainfall). empirical models have been developed using several parameters and, recently, prognostic and prediction models based on artificial intelligence techniques such as neural networks. The daily averages were used to test NN models with 5 parameters and the relationship with the coefficient of the highest correlation was chosen. Two thirds were used to establish the model and one third for validation. We compared its performance with four models in the literature (Angstrom-Prescott, Bahel, Newland and Abdalla).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive hysteresis controller for the Switched Reluctance Machines Critical current density determination of superconducting material Induction machine finite element model for field-oriented control in Electric vehicle power train Solar radiation forecasting using artificial neural network for local power reserve Modeling of a radial flux PM rotating machine using a new hybrid analytical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1