{"title":"基于RBF神经网络模型的海参养殖池塘水温预测","authors":"Min Sun, Ji Chen, Daoliang Li","doi":"10.1109/ICSAI.2012.6223239","DOIUrl":null,"url":null,"abstract":"Water temperature is considered as one of the most important parameters which influence the growth rate and development of sea cucumbers as well as their distribution within the pond environment. As the change process of water temperature is dependent on the complicated meteorological and geophysical conditions, artificial neural network with specific features such as non-linearity, adaptivity, generalization, and model independence will be a proper method for solving this problem. This paper presents a Radial Basis Function (RBF) neural network model based on nearest neighbor clustering algorithm and puts forward some improved methods aiming at looking for the defects of original algorithm, then integrated them into an optimization model and verified it on matlab platform. Finally, a comparison between RBF model and 1-D vertical model was made to confirm the excellent predictive performance of optimized RBF neural network model.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Water temperature prediction in sea cucumber aquaculture ponds by RBF neural network model\",\"authors\":\"Min Sun, Ji Chen, Daoliang Li\",\"doi\":\"10.1109/ICSAI.2012.6223239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water temperature is considered as one of the most important parameters which influence the growth rate and development of sea cucumbers as well as their distribution within the pond environment. As the change process of water temperature is dependent on the complicated meteorological and geophysical conditions, artificial neural network with specific features such as non-linearity, adaptivity, generalization, and model independence will be a proper method for solving this problem. This paper presents a Radial Basis Function (RBF) neural network model based on nearest neighbor clustering algorithm and puts forward some improved methods aiming at looking for the defects of original algorithm, then integrated them into an optimization model and verified it on matlab platform. Finally, a comparison between RBF model and 1-D vertical model was made to confirm the excellent predictive performance of optimized RBF neural network model.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water temperature prediction in sea cucumber aquaculture ponds by RBF neural network model
Water temperature is considered as one of the most important parameters which influence the growth rate and development of sea cucumbers as well as their distribution within the pond environment. As the change process of water temperature is dependent on the complicated meteorological and geophysical conditions, artificial neural network with specific features such as non-linearity, adaptivity, generalization, and model independence will be a proper method for solving this problem. This paper presents a Radial Basis Function (RBF) neural network model based on nearest neighbor clustering algorithm and puts forward some improved methods aiming at looking for the defects of original algorithm, then integrated them into an optimization model and verified it on matlab platform. Finally, a comparison between RBF model and 1-D vertical model was made to confirm the excellent predictive performance of optimized RBF neural network model.