改进布谷鸟算法优化广义回归神经网络在软件质量预测中的应用

Luyao Liu, Peisheng Han
{"title":"改进布谷鸟算法优化广义回归神经网络在软件质量预测中的应用","authors":"Luyao Liu, Peisheng Han","doi":"10.1117/12.2639204","DOIUrl":null,"url":null,"abstract":"Software quality prediction technology is the main method of early prediction and control of software quality. Generalized regression neural network (GRNN) can better map the nonlinear relationship between software metrics and software quality elements, but the prediction accuracy of the software quality prediction model based on GRNN is low. To improve the accuracy of the quality prediction model, we use the improved cuckoo search (CS) algorithm to optimize the smoothing factor of GRNN, solve the problems of insufficient population diversity and slow convergence speed in the later stage of the cuckoo algorithm, and propose a software quality prediction model based on the improved CS algorithm to optimize GRNN by introducing Gaussian disturbance function, to improve the accuracy of predicting the number of software defects. Finally, the paper uses the public promise data set for simulation experiments and verifies the model by comparing it with the GRNN model optimized by the CS algorithm and the standard GRNN model.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of improved cuckoo algorithm to optimize generalized regression neural network in software quality prediction\",\"authors\":\"Luyao Liu, Peisheng Han\",\"doi\":\"10.1117/12.2639204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software quality prediction technology is the main method of early prediction and control of software quality. Generalized regression neural network (GRNN) can better map the nonlinear relationship between software metrics and software quality elements, but the prediction accuracy of the software quality prediction model based on GRNN is low. To improve the accuracy of the quality prediction model, we use the improved cuckoo search (CS) algorithm to optimize the smoothing factor of GRNN, solve the problems of insufficient population diversity and slow convergence speed in the later stage of the cuckoo algorithm, and propose a software quality prediction model based on the improved CS algorithm to optimize GRNN by introducing Gaussian disturbance function, to improve the accuracy of predicting the number of software defects. Finally, the paper uses the public promise data set for simulation experiments and verifies the model by comparing it with the GRNN model optimized by the CS algorithm and the standard GRNN model.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件质量预测技术是软件质量早期预测和控制的主要方法。广义回归神经网络(GRNN)能较好地映射软件度量与软件质量要素之间的非线性关系,但基于GRNN的软件质量预测模型预测精度较低。为了提高质量预测模型的准确性,采用改进的布谷鸟搜索(CS)算法对GRNN的平滑因子进行优化,解决布谷鸟算法后期种群多样性不足、收敛速度慢的问题,并提出了一种基于改进CS算法的软件质量预测模型,通过引入高斯扰动函数对GRNN进行优化,提高软件缺陷数预测的准确性。最后,利用公开承诺数据集进行仿真实验,并将模型与CS算法优化后的GRNN模型和标准GRNN模型进行对比验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of improved cuckoo algorithm to optimize generalized regression neural network in software quality prediction
Software quality prediction technology is the main method of early prediction and control of software quality. Generalized regression neural network (GRNN) can better map the nonlinear relationship between software metrics and software quality elements, but the prediction accuracy of the software quality prediction model based on GRNN is low. To improve the accuracy of the quality prediction model, we use the improved cuckoo search (CS) algorithm to optimize the smoothing factor of GRNN, solve the problems of insufficient population diversity and slow convergence speed in the later stage of the cuckoo algorithm, and propose a software quality prediction model based on the improved CS algorithm to optimize GRNN by introducing Gaussian disturbance function, to improve the accuracy of predicting the number of software defects. Finally, the paper uses the public promise data set for simulation experiments and verifies the model by comparing it with the GRNN model optimized by the CS algorithm and the standard GRNN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improve vulnerability prediction performance using self-attention mechanism and convolutional neural network Design of digital pulse-position modulation system based on minimum distance method Design of an externally adjustable oscillator circuit Research on non-intrusive video capture technology based on FPD-linkⅢ The communication process of digital binary pulse-position modulation with additive white Gaussian noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1