{"title":"治疗性运动的能量补偿速度场控制","authors":"Yoshiro Fukui, T. Wada","doi":"10.1109/CDC.2016.7798371","DOIUrl":null,"url":null,"abstract":"Human-machine systems, such as those for rehabilitation, are required to be safe for human use when performing a given operating task. Passivity-based controllers such as passive velocity field control have an advantage to realizing the safe operation of human-machine systems. However, active behavior toward the external environment, including human bodies, is required to realize a given task. Such active behavior is difficult for passivity-based controllers. This study focused on ensuring that a manipulator behaves passively toward an external force when the kinetic energy is greater than or equal to a given threshold and actively otherwise. A velocity field control method with an energy compensation mechanism was developed. Numerical simulations demonstrated that the closed-loop system generally behaved passively toward external forces, and the proposed method inhibited the decrease in the kinetic energy of the closed-loop system from a dissipative external force.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Velocity field control with energy compensation toward therapeutic exercise\",\"authors\":\"Yoshiro Fukui, T. Wada\",\"doi\":\"10.1109/CDC.2016.7798371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-machine systems, such as those for rehabilitation, are required to be safe for human use when performing a given operating task. Passivity-based controllers such as passive velocity field control have an advantage to realizing the safe operation of human-machine systems. However, active behavior toward the external environment, including human bodies, is required to realize a given task. Such active behavior is difficult for passivity-based controllers. This study focused on ensuring that a manipulator behaves passively toward an external force when the kinetic energy is greater than or equal to a given threshold and actively otherwise. A velocity field control method with an energy compensation mechanism was developed. Numerical simulations demonstrated that the closed-loop system generally behaved passively toward external forces, and the proposed method inhibited the decrease in the kinetic energy of the closed-loop system from a dissipative external force.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2016.7798371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2016.7798371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity field control with energy compensation toward therapeutic exercise
Human-machine systems, such as those for rehabilitation, are required to be safe for human use when performing a given operating task. Passivity-based controllers such as passive velocity field control have an advantage to realizing the safe operation of human-machine systems. However, active behavior toward the external environment, including human bodies, is required to realize a given task. Such active behavior is difficult for passivity-based controllers. This study focused on ensuring that a manipulator behaves passively toward an external force when the kinetic energy is greater than or equal to a given threshold and actively otherwise. A velocity field control method with an energy compensation mechanism was developed. Numerical simulations demonstrated that the closed-loop system generally behaved passively toward external forces, and the proposed method inhibited the decrease in the kinetic energy of the closed-loop system from a dissipative external force.