基于小波的长程相关数据函数估计

Y. Wang
{"title":"基于小波的长程相关数据函数估计","authors":"Y. Wang","doi":"10.1109/WITS.1994.513927","DOIUrl":null,"url":null,"abstract":"Traditionally, processes with long-range dependence have been mathematically awkward to manipulate. This has made the solution of many of the classical signal processing problems involving these processes rather difficult. For a fractional Gaussian noise model, we derive asymptotics for minimax risks and show that wavelet estimates can achieve minimax over a wide range of spaces. This article also establishes a wavelet-vaguelette decomposition (WVD) to decorrelate fractional Gaussian noise.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Function estimation via wavelets for data with long-range dependence\",\"authors\":\"Y. Wang\",\"doi\":\"10.1109/WITS.1994.513927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, processes with long-range dependence have been mathematically awkward to manipulate. This has made the solution of many of the classical signal processing problems involving these processes rather difficult. For a fractional Gaussian noise model, we derive asymptotics for minimax risks and show that wavelet estimates can achieve minimax over a wide range of spaces. This article also establishes a wavelet-vaguelette decomposition (WVD) to decorrelate fractional Gaussian noise.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

传统上,具有远程依赖关系的过程在数学上难以操作。这使得许多涉及这些过程的经典信号处理问题的解决变得相当困难。对于分数阶高斯噪声模型,我们导出了极大极小风险的渐近性,并表明小波估计可以在很宽的空间范围内实现极大极小。本文还建立了一种小波-小波分解(WVD)去相关分数阶高斯噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Function estimation via wavelets for data with long-range dependence
Traditionally, processes with long-range dependence have been mathematically awkward to manipulate. This has made the solution of many of the classical signal processing problems involving these processes rather difficult. For a fractional Gaussian noise model, we derive asymptotics for minimax risks and show that wavelet estimates can achieve minimax over a wide range of spaces. This article also establishes a wavelet-vaguelette decomposition (WVD) to decorrelate fractional Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1