基于可达性的空间碎片碰撞检测

ARCH@ADHS Pub Date : 2018-09-17 DOI:10.29007/5313
Kerianne L. Hobbs, Peter Heidlauf, Alexander Collins, Stanley Bak
{"title":"基于可达性的空间碎片碰撞检测","authors":"Kerianne L. Hobbs, Peter Heidlauf, Alexander Collins, Stanley Bak","doi":"10.29007/5313","DOIUrl":null,"url":null,"abstract":"Benchmark Proposal: Space debris tracking and collision prediction is a growing worldwide problem as more and more objects are placed into orbit. While traditional methods simulate particles with Gaussian uncertainty to make collision predictions, we instead analyze the problem from a reachability perspective. The problem appears to require methods capable of quickly analyzing high-dimensional nonlinear systems, but we take advantage multiple kinds of problem structure to show that reachability analysis may be viable for this problem. In particular we present an initial analysis approach that uses numerical simulation for reachability analysis, and interval arithmetic with AABB trees for fast collision detection. The analysis uses a variable size time step with a counter-example guided abstraction refinement (CEGAR) method to increase analysis speed without sacrificing accuracy. Our approach can analyze upwards of thousands of orbiting objects faster than real-time, where each object is subject to some initial state uncertainty.","PeriodicalId":236469,"journal":{"name":"ARCH@ADHS","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Space Debris Collision Detection using Reachability\",\"authors\":\"Kerianne L. Hobbs, Peter Heidlauf, Alexander Collins, Stanley Bak\",\"doi\":\"10.29007/5313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benchmark Proposal: Space debris tracking and collision prediction is a growing worldwide problem as more and more objects are placed into orbit. While traditional methods simulate particles with Gaussian uncertainty to make collision predictions, we instead analyze the problem from a reachability perspective. The problem appears to require methods capable of quickly analyzing high-dimensional nonlinear systems, but we take advantage multiple kinds of problem structure to show that reachability analysis may be viable for this problem. In particular we present an initial analysis approach that uses numerical simulation for reachability analysis, and interval arithmetic with AABB trees for fast collision detection. The analysis uses a variable size time step with a counter-example guided abstraction refinement (CEGAR) method to increase analysis speed without sacrificing accuracy. Our approach can analyze upwards of thousands of orbiting objects faster than real-time, where each object is subject to some initial state uncertainty.\",\"PeriodicalId\":236469,\"journal\":{\"name\":\"ARCH@ADHS\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARCH@ADHS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/5313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARCH@ADHS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/5313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基准建议:随着越来越多的物体进入轨道,空间碎片跟踪和碰撞预测是一个日益严重的世界性问题。传统方法采用高斯不确定性模拟粒子进行碰撞预测,而本文从可达性角度分析碰撞预测问题。这个问题似乎需要能够快速分析高维非线性系统的方法,但我们利用多种问题结构来表明可达性分析可能是可行的。特别地,我们提出了一种使用数值模拟进行可达性分析的初始分析方法,以及使用AABB树进行快速碰撞检测的区间算法。该分析使用可变大小的时间步和反例引导抽象细化(CEGAR)方法来提高分析速度而不牺牲准确性。我们的方法可以比实时更快地分析数千个轨道上的物体,每个物体都有一些初始状态的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space Debris Collision Detection using Reachability
Benchmark Proposal: Space debris tracking and collision prediction is a growing worldwide problem as more and more objects are placed into orbit. While traditional methods simulate particles with Gaussian uncertainty to make collision predictions, we instead analyze the problem from a reachability perspective. The problem appears to require methods capable of quickly analyzing high-dimensional nonlinear systems, but we take advantage multiple kinds of problem structure to show that reachability analysis may be viable for this problem. In particular we present an initial analysis approach that uses numerical simulation for reachability analysis, and interval arithmetic with AABB trees for fast collision detection. The analysis uses a variable size time step with a counter-example guided abstraction refinement (CEGAR) method to increase analysis speed without sacrificing accuracy. Our approach can analyze upwards of thousands of orbiting objects faster than real-time, where each object is subject to some initial state uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ARCH-COMP18 Category Report: Hybrid Systems Theorem Proving Linear Differential-Algebraic Equations (Benchmark Proposal) Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Discrete-Space Analysis of Partial Differential Equations ARCH-COMP18 Category Report: Hybrid Systems with Piecewise Constant Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1